UAV-BASED REMOTE SENSING IN FLUVIAL RESEARCH

CEDREN-seminar 13 November 2014

9.45 - 10.00		ARRIVAL & REGISTRATION w/coffee
10.00 - 10.25	Dr. Peggy Zinke, SINTEF ER, Trondheim	Welcome & introduction
10.25 - 10:50	Dr. Aksel Transeth, SINTEF IKT, Trondheim	UAV – Technologies and opportunities
10:50 - 11:15	Dr. Stian A. Solbø, NORUT, Tromsø	UAV remote sensing for climate and environmental research
11:15 - 11:40	Christian Haas, IAMHYDRO, Stuttgart	HyDroneS (Hydrosystem Drone Surveying) - tales from the field, state of the art and future development
11:40 - 12:40		LUNCH BREAK
12:40 - 13:05	Ass. Prof. Florin Nedelcut, UGAL, Galati, Romania	Coanda Effect aerodyne – a new concept for fluvial and ecological remote sensing
13.05 - 13:30	Prof. Jochen Aberle, NTNU-IVM, Trondheim	Use of remote sensing data in environmental hydraulics
13:30 - 13:55	Dr. Richard Hedger & Dr. Anders Foldvik, NINA, Trondheim	Remote sensing for fish ecology research – experiences and future needs
13:55 - 14:15		COFFEE BREAK
14:15 - 16:00		Discussions & workshop on future project ideas
16:00		Closing

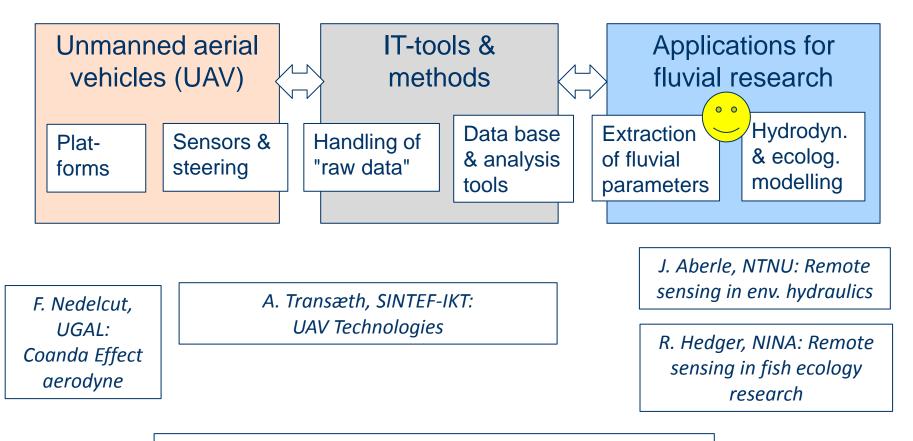
CEDREN

Introduction

Unmanned aerial vehicles (UAV)

- Exist in a very wide range of sizes and purposes, rapidly growing market
- Easy to deploy at high temporal resolutions (low costs; "line of sight" ca. 70-150 m above ground)
 Use for commerical applications and research regulated by Civil Aviation Agency

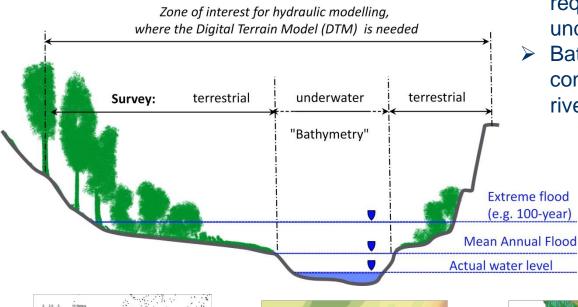
Remote Sensing


- Acquisition of information about an object through sensors that are not in physical contact with it
- Active or passive (radiation internally generated or externally emitted)
- Typical platforms: satellite, aircraft, UAV

Fluvial research

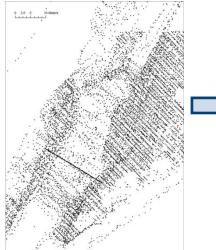
- River catchments as holistic systems, including geo-morphology, hydrology and biota
- Sampling of "river scape" data at different scales (continuous data from small scale to entire catchments)
- Traditionally much focus on river channels

UAV-based remote sensing in fluvial research



S. Solbø, NORUT: UAV appl. for clim. & env. research

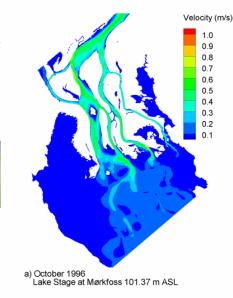
C. Haas, IAMHYDRO: HyDroneS (SfM Application)



Fluvial research

- Use of hydrodynamic models requires detailed knowledge of underwater-morphology!
- Bathymetry-surveys are timeconsuming and may be dangerous in rivers with strong currents.

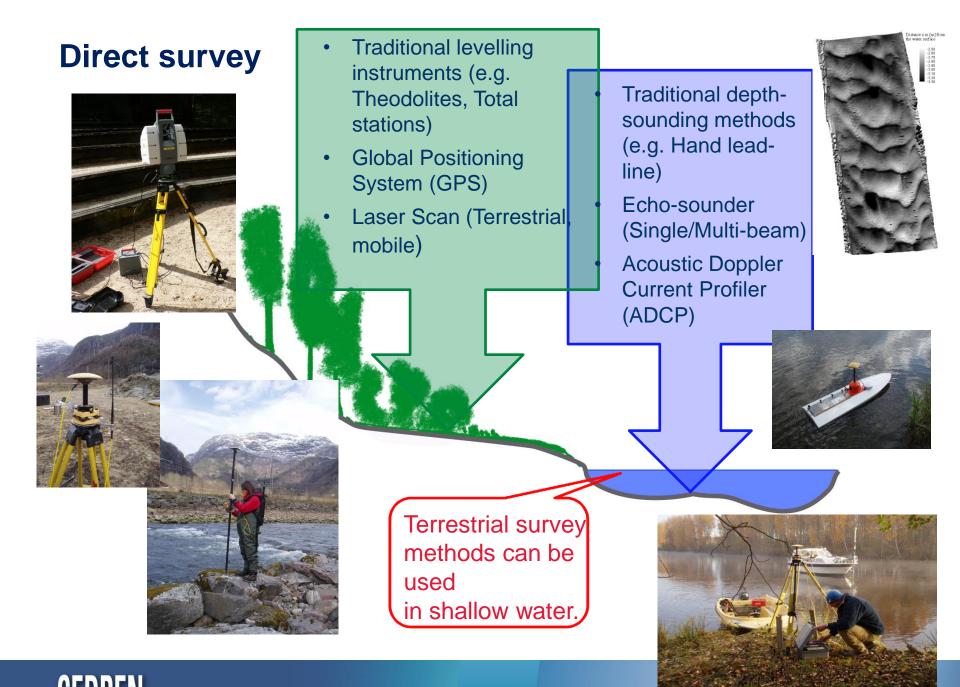
Bathymetry = the underwater equivalent to topography in oceans, lakes and rivers



Elevation points

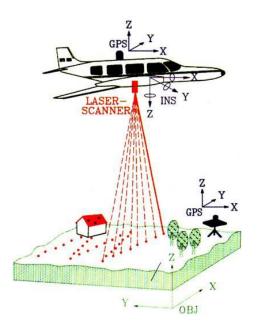
Everior (m asi 133-148 133-148 133-154 135-154 135-154 135-154 135-154 135-154 135-154 135-154 135-154 135-155

Hydrodynamic model (flow & sediments)



4/TOTAL

Centre for Environmental Design of Renewable Energy


Digital terrain model

Centre for Environmental Design of Renewable Energy

y /

Remote sensing techniques

Laser measures aircraftground distance with high accuracy; Reflections from vegetation etc. have to be filtered out Photogrammetry

- Interferometric Synthetic Aperture Radar (IFSAR)
- Airborne Laser Scan

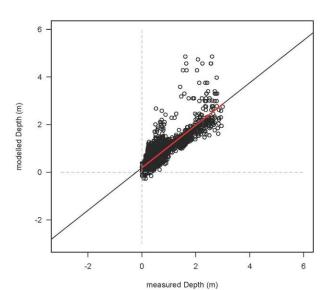
Optical methods: use the connection between water depth and light attenuation

- Optical methods
 based on aerial
 photography
- Bathymetric Laser Scan ("Green LIDAR")

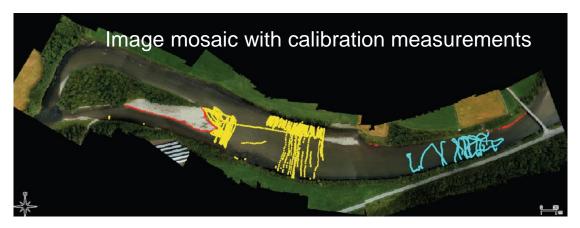
Green LIDAR: became just recently suitable also for mapping of shallow water areas

Centre for Environmental Design of Renewable Energy

Optical bathymetric models – pilot study 2011 (CEDREN EnviPeak)



Principle:


Deeper water is darker in an aerial image than shallower water (if the water is clear!).

Challenge:

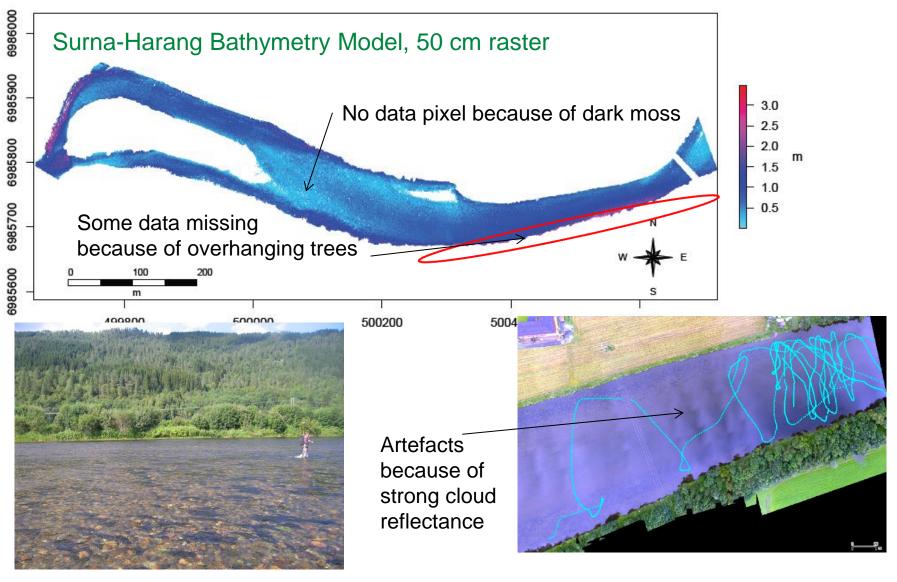
To get absolute depth values, not relative depths

Method by Lyzenga (1981) and Flener (2013): Removes all information from the image that is not "depth" (e.g. substrate colour, turbidity); requires some directly measured depth values for calibration.

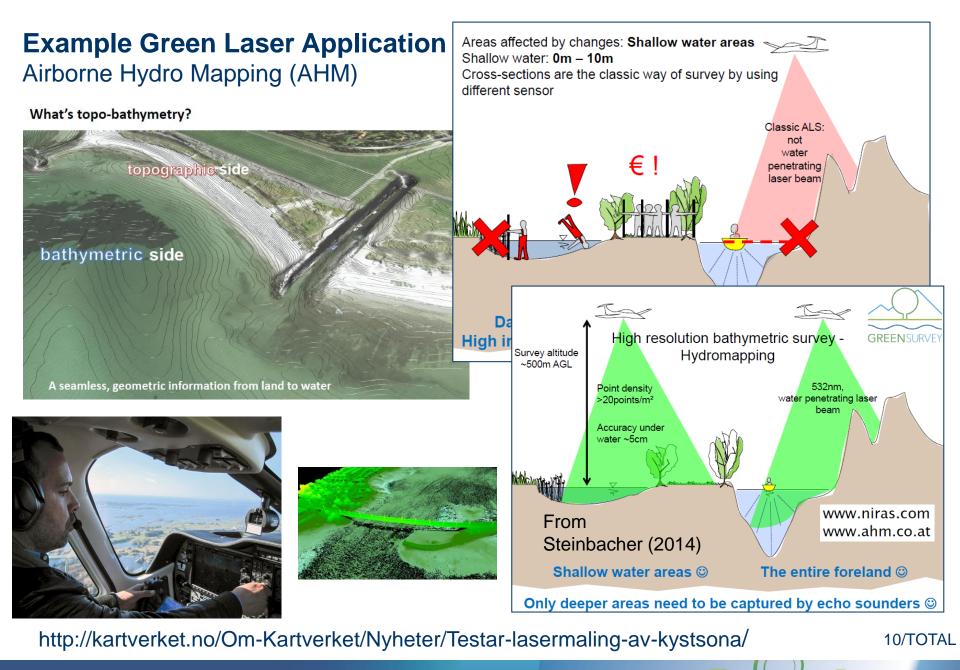
Optical bathymetric models – pilot study 2011 (CEDREN EnviPeak)

- Setting up ground control points
- Taking aerial images (here: UAV)
- Calibration measurements (manual GPS, vesselbased ADCP)

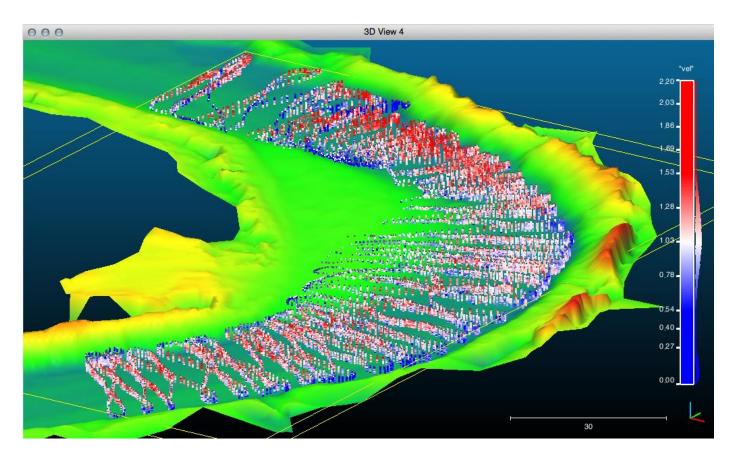
Weather conditions needed: dry, \pm cloudy (no sun-reflections on the water surface); clear water



Centre for Environmental Design of Renewable Energy



Optical bathymetric models – pilot study 2011

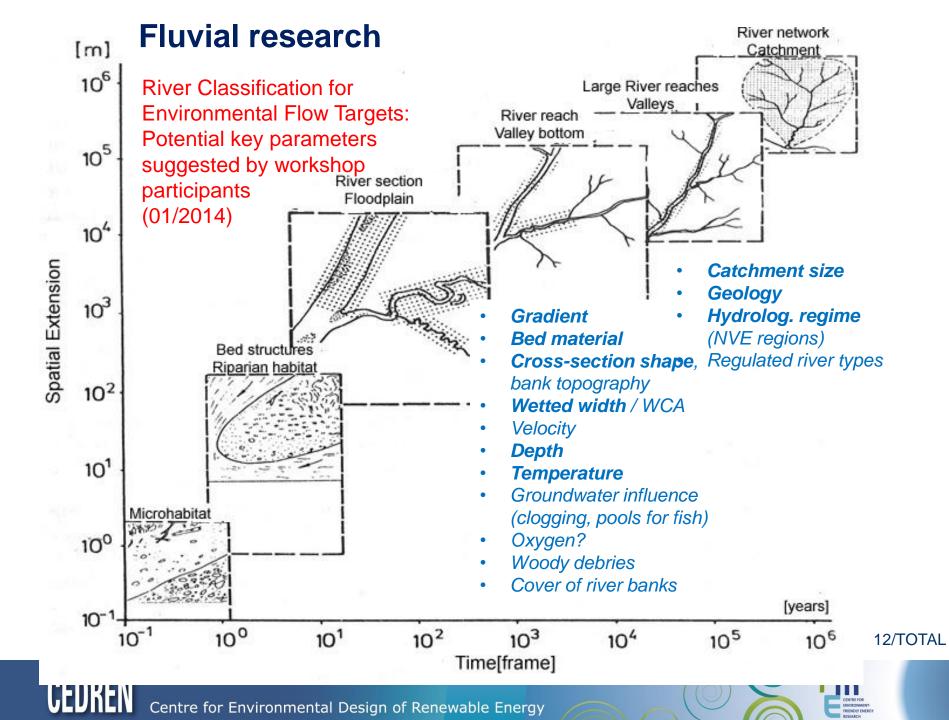


CEDREN

Centre for Environmental Design of Renewable Energy

Combination of vessel-based measurements and UAV

Advanced ITand GIS tools for fluvial data analysis



C. Flener, Uni Turku, Finland & GWM-Engineering :

"3D flow velocities (m/s) from ADCP as a 3D point cloud on top of a seamless topography that is created from mobile LiDAR and UAV-based bathymetry"

11/TOTAL

UAV-BASED REMOTE SENSING IN FLUVIAL RESEARCH

CEDREN-seminar 13 November 2014

9.45 - 10.00		ARRIVAL & REGISTRATION w/coffee
10.00 - 10.25	Dr. Peggy Zinke, SINTEF ER, Trondheim	Welcome & introduction
10.25 - 10:50	Dr. Aksel Transeth, SINTEF IKT, Trondheim	UAV – Technologies and opportunities
10:50 - 11:15	Dr. Stian A. Solbø, NORUT, Tromsø	UAV remote sensing for climate and environmental research
11:15 - 11:40	Christian Haas, IAMHYDRO, Stuttgart	HyDroneS (Hydrosystem Drone Surveying) - tales from the field, state of the art and future development
11:40 - 12:40		LUNCH BREAK
12:40 - 13:05	Ass. Prof. Florin Nedelcut, UGAL, Galati, Romania	Coanda Effect aerodyne – a new concept for fluvial and ecological remote sensing
13.05 - 13:30	Prof. Jochen Aberle, NTNU-IVM, Trondheim	Use of remote sensing data in environmental hydraulics
13:30 - 13:55	Dr. Richard Hedger & Dr. Anders Foldvik, NINA, Trondheim	Remote sensing for fish ecology research – experiences and future needs
13:55 - 14:15		COFFEE BREAK
14:15 - 16:00		Discussions & workshop on future project ideas
16:00		Closing

CEDREN