

HyDroneS -Hydrosystem Drone Surveying

Tales from the field, state of the art and future development

13.11.2014

Outline

HYDROSYSTEM DRONE SURVEYING

Aim: Application of UAV technology in the fields of:

- Hydraulics
- River morphology
- Mapping of rivers and surrounding
- Holistic data collection of hydrosystems (→ vegetation, land use, forestry)

\rightarrow efficient for small and middle scale reaches

13.11.2014

HyDroneS combines different **optical sensors** (camera, 3D camera, multispectral camera, NIR camera etc.), position of photo shooting (**UAV**) and **post-processing** methods

HYDROSYSTEM DRONE SURVEYING

- SfM model (accuracy?)
- aerial pictures (resolution?)
- orthophoto
- Substrate (grainsizes?)
- reach dimensions
- access?

2. Technical Aspects Field work

• VS. Picture: Mavinci

- camera lens 19mm, 30mm or 60mm
- altitude 40m, 80m, 100m, >100m
- **automated flight** for fast and precise data acquisition
- data check in field
- technically possible ≠ allowed!

Christian Haas, I AM HYDRO

13.11.2014

2. Technical Aspects Surveying data

HYDROSYSTEM DRONE SURVEYING

13.11.2014

4. Applications Substrate Mapping

→habitat modeling
→changes in river
morphology

13.11.2014

4. Applications

SfM model of beginning of backwater (250m x 420m) with 202 UAV photos. Model generation of topography (DEM) and water surface

2. Technical aspects Accuracy

HYDROSYSTEM DRONE SURVEYING

z accuracy of a DEM (max difference between DEM and terrestrial surveying)

DEM accuracy $\leftarrow \rightarrow$ point accuracy (3 cm)

	Ground	Max error*	Region
C	sand, gravel, Blocks	10 cm	А
B	patchy vegetation	20 cm	В
A-A	dense vegetation	1 m	C
	Forest	2 m +	D
	underwater	not possible**	E

*altitude 100 m ** currently...

13.11.2014

4. Applications point cloud filtration on different levels \rightarrow with and without vegetation

HYDROSYSTEM DRONE SURVEYING

z accuracy is direct correlated with cloud density

patchy vegegetation \rightarrow small error

dense vegetation \rightarrow large error

4. Applications Additional information for mesh generation

HYDROSYSTEM DRONE SURVEYING

13.11.2014

4. Applications "Orthomotion"

march Ma

"Orthomotion"

- morphologic changes and changes of water surface at different discharges
- connection of side channels
- conditions at dry periods and different water levels

 \rightarrow hydropeaking!

4. Applications "Orthomotion"

HYDROSYSTEM DRONE SURVEYING

13.11.2014

4. Applications NDVI mapping, automated vegetation mapping

HYDROSYSTEM DRONE SURVEYING

RNVI (River Normalized)

NDVI

Near Infrared

13.11.2014

4. Applications advantage: 1 flight \rightarrow various information! example: 700m x 90m reach in Black Forest

HYDROSYSTEM DRONE SURVEYING

Orthophoto of the whole reach 1 cm / pixel ground substrate resolution vegetation / complex birds flow conditions

13.11.2014

4. Applications Technologies HyDroneS has develloped

- NDVI and RNVI calculator for individual images or orthomosaics
- **Multi-band image calculator** for analysis of R,G,B,NIR data sets
- Rapid assessment of local morphological changes
 using difference of DEM
- **4D structure-from-motion (SfM)** showing changes in the surface model in both space and in time
- Separate water surface and elevation models (WEM and DEM)

5. Future2D surface velocity

HYDROSYSTEM DRONE SURVEYING

13.11.2014

5. Future automated grain size determination

HYDROSYSTEM DRONE SURVEYING

5. Future Determination of roughness and resistance

HYDROSYSTEM DRONE SURVEYING

... of vegetation and disturbing objects for hydraulic models

... of plant population (e.g. forest) for wind models

... of arbitrary objects (e.g. train tunnel for optimization of aerodynamic resistance)

13.11.2014

Software **H@ERHAN**

SIe

HYDROSYSTEM DRONE SURVEYING

We want you ...to become a member of HyDroneS international research group

Takk for at du lyttet

Christian Haas christian@iamhydro.com hydrones.de Iamhydro.com