

Mechanical energy storage

Hydropower, pumped hydro, flywheels, compressed air

SINTEF

NATURHISTORISK MUSEUM UNIVERSITETET I OSLO

Julie Charmasson, SINTEF Energy Research

Centre for environmental design of renewable energy -CEDREN

100 skapende å

Mechanical storage

Flywheels

Hydro

Compressed air

Compressed Air Energy Storage (CAES)

CAES: Principle

- Air is compressed (compressor) and store in undergrounds caverns or storage tanks during off-peaks hours.
- Air is then used for running a gas-fired turbine at time of peak demand.
- 3 types: Conventional / Adiabatic / Isothermal

CAES: Principle

- Air is compressed (compressor) and store in undergrounds caverns or storage tanks during off-peaks hours.
- Air is then used for running a **gas-fired turbine** at time of peak demand.
- 3 types: Conventional / Adiabatic / Isothermal

CAES: Characteristics

Target power	Efficiency	Response time	Discharge time	Lifetime	Investments costs
100-500 MW	40-55 % Up to 70%	min.	h	30 y	400-1200 € /kWh

https://www.wired.com/2010/03/compressed-air-plants/

CAES: Characteristics

McIntosh CAES plant (USA) https://www.wired.com/2010/03/compressed-air-plants/

CEDREN Centre for Environmental Design of Renewable Energy

CAES: Maturity

Power plant	year	Power	Storage	
Huntorf (GE)	1979	290 MW	3h	
McIntosh (USA)	1991	110 MW	26h	
ADELE (GE)	2018	90 MW	4h	
PG&E (USA)	2021	300 MW	10h	
Norton (USA)		Up to2700 MW	16h	

McIntosh CAES plant (USA) http://www.apexcaes.com/caes

 $[\dot{X}_{atr}] = \frac{d}{dt} \left(\frac{n}{V}\right) = \frac{n}{V} - \frac{\dot{V}n}{V^2} = \left(\frac{m}{M}\right) / V - \frac{\dot{V}}{V^2} \times \frac{m}{M}$

 $\dot{T}_{c} = \frac{(\dot{M}_{in} h_{in}/V_{c}) - (\dot{V}_{c}/V_{c})([X_{abr}]\hat{h}_{c}) - [\dot{X}_{abr}]\hat{h}_{c} + P_{c}[\dot{X}_{abr}]/[X_{abr}]}{[X_{abr}]C_{p,abr}(T_{c}) - P_{c}/T_{c}}$

- System design
- Technical solutions for underground compressed air storage
- Under water or tank storage systems
- Environmental impacts and safety
- Adiabatic storage
- Development of turbines only running on compressed air using scroll expanders

Flywheels

Centre for Environmental Design of Renewable Energy

Flywheels: Principle

- Mass (Flywheel) is rotating around an axis (fixed) in a vacuum chamber and connected to an electrical machine.
- Cinetic (rotational) energy is stored

- Storage phase:
 - Motor
 - Eel used \rightarrow speed /
- Discharging phase:
 - Generator
 - Eel released → speed[\]

Flywheels: Characteristics

Target power	Efficiency	Response time	Discharge time	Lifetime	Investments costs
100-1500 kW	80 %	ms	s to min	20 y	200-3000 € /kWh

Flywheels: Characteristics

Flywheels: Applications

• High power during short time

2 types

Low speed	Steel	v > 10 000 tr/min
High speed	Carbon fiber	v \rightarrow 50 000 tr/min

• Applications:

		The second se
Transportation	Electric and hybrid cars, buses Light trains, trams, underground Ferries	
Power system services	Grid stability Frequency regulation Voltage support	
Industry	Uninterrupted power supply Cranes and elevators	

Beacon Power

Hazle Township, Pennsylvania, USA 20 MW in total, 200 flywheels, ~1 300 kg each

http://beaconpower.com/hazle-township-pennsylvania/

- Frequency regulations for the power grid
- Three plants in USA connected to the grid

Centre for Environmental Design of Renewable Energy

- Evaluate the potential in stabilization of frequency from renewables
- Design a test machine connected to a wind turbine
- Large scale applications for energy storage
- New materials
- Experimental set-up
- Tests

Pumped Storage Hydropower

Shaft

Runner

Pumped Storage Hydropower: Principle

• Storage phase :

- Water is pumped from a lower reservoir to a reservoir at higher elevation during off-peak period.
- Discharging phase:
 - Water flows back down to lower reservoir, generating electricity during peak periods

Head range:

- 10 to 2000 m
- 100 m to 600 m reversible turbine

Limberg I, Austria, https://ec.europa.eu

Pumped Storage Hydropower: Characteristics

Typical power	Efficiency	Response time	Discharge time	Lifetime	Investments costs
200-350 MW	75-85 %	min	Several hours	40-80 y	200-3000 € /kWh

Installed Energy Storage capacity

Worldwide installed rated power of storage facilities for **electrical energy**. Such power level can be sustained for up to several hours or shorter

Installed PSH world-wide: ~140GW

Centre for Environmental Design of Renewable Energy

Research needs - Hydro

- Market models at multiple time scales
- Environmental impacts
- Social acceptance
- Interconnections, grids, HVDC technology
- Benefits of large-scale use of storage hydro combined with large scale offshore and onshore wind and solar energy production in Europe
- Design of reversible pump turbine plants
- System design to achieve dynamic flexibility
- Build a test facility
- Regulation

Norway can store 80 TWh of hydropower in existing reservoirs

Blåsjø 7.8TWh RESERVOIR (1000 times Goldistal)

Summary- Mechanical storage

Hydro

- Operates typically on weeks to hours
- Many applications for both energy and storage
- World-wide potential

Compressed air

- Operates typically on hours
- Two commercial energy storage plants
- Need for more research

Flywheels

- Operates typically on seconds to minutes
- Used a lot in many other sectors
- Few large-scale energy storage applications

Centre for Environmental Design of Renewable Energy

