Modelling an Integrated Northern European Regulating Power Market Based on a Common Day-Ahead Market

Stefan Jaehnert, Gerard L. Doorman
IAEE International Conference, Rio de Janeiro, 07.06.2010
Outline

• Introduction

• Integrated regulating power market model
 – Day-ahead market
 – Regulating reserve procurement
 – System balancing

• Case studies

• Conclusion
“Balance Management in Multinational Power Markets”

- Sustainable (intermittent) electricity production => need for regulating resources
- Cross boarder trade => integration of national regulating energy markets
- Aim to integrate northern European regulating power markets
Modelling objective

- Increasing intermittent power generation => utilization balancing capabilities of Nordic hydro-based power system
- Investigation of:
 - Possibility of foreign regulating reserve procurement
 - System wide regulating resource exchange (real-time system balancing)
 - Transmission reservation for reserve procurement and system balancing
 - Regulating reserve and resource pricing
- Estimation of socio-economic benefit of integrating multinational regulating power markets
- Analysis of different regulating power market integration steps
Overview

- Integrated regulating power market based on a common day-ahead market
- Covers Denmark, Finland, Norway, Sweden, Germany, Netherlands (Northern Europe)
- Fundamental model
- Perfect market assumption
- Hydro system inflow / wind production scenarios: 1951-1990
Structure

Input:
- Power plant data
- Transmission system data
- Demand, Ex-&Import curves
- Hydro inflow, wind speeds

Model:
- Day-ahead market
 - Generation dispatch
 - Water values
 - Area prices
- Reserve procurement
 - Generation redispatch
 - Water values
 - Area prices
- System balancing

Output:
- Total production cost
- Area prices
- Optimal generation dispatch
- Transmission dispatch
- Reserve procurement cost
- Availability of regulating reserves
- System balancing cost
- Regulating resource exchange

EMPS – EFI’s Multi-area Power-market Simulator
IRiE – Integrated Regulating power market in Europe
Day-ahead market

Input:
- Power plant data
- Transmission system data
- Demand, Ex-&Import curves
- Hydro inflow, wind speeds

Model:
Day-ahead market
- Generation dispatch
- Water values
- Area prices

Reserve procurement
- Generation redispatch
- Water values
- Area prices

System balancing
- System balancing cost
- Regulating resource exchange

Output:
- Total production cost
- Area prices
- Optimal generation dispatch
- Transmission dispatch
- Reserve procurement cost
- Availability of regulating reserves

EMPS
- Water values
- Area prices
- Power plant data
- Transmission system data
- Demand, Ex-&Import curves
- Hydro inflow, wind speeds

IRiE
- System imbalance:
 - Demand forecast error
 - Wind forecast error

EMPS IRiE
EMPS – Common day-ahead market

- Mid- and long-term optimisation of system operation on weekly basis (containing several periods)
- Developed at SINTEF Energy Research
- Key points:
 - Transmission system (NTCs, linear losses)
 - Nordic hydro system (reservoirs, power plants and water course)
 - Thermal scheduled production & dispatchable production (power plants with marginal production- & start up costs)
 - Wind power generation
 - Consumption (temperature dependent)
- Results:
 - Optimal unit commitment and generation dispatch
 - Area prices, water values
Reserve procurement

Input:
- Power plant data
- Transmission system data
- Demand, Ex-&Import curves
- Hydro inflow, wind speeds

Model:
Day-ahead market
- Generation dispatch
- Water values
- Area prices

Reserve procurement
- Generation redispatch
- Water values
- Area prices

System balancing
- Water values
- Area prices

Output:
- Total production cost
- Area prices
- Optimal generation dispatch
- Transmission dispatch

- Reserve procurement cost
- Availability of regulating reserves

EMPS
- System balancing cost
- Regulating resource exchange

IRiE

NTNU
Norwegian University of Science and Technology
IRiE - Reserve procurement

Objective: least cost redispatch of generation and transmission capacity in order to fulfil given reserve requirements

- Procurement of up- & downward regulating reserves
- Reserve procurement cost includes:
 - Production decrease on infra marginal units / Production increase on ultra marginal units
 - Efficiency loss for thermal units at partial load
 - Start up- / shut down costs of thermal units
Reserve procurement strategy

Before procurement:

Upward regulating reserves:

Downward regulating reserves:

After procurement:
Reserve requirements

- Requirements for secondary reserves (UCTE) and Frequency restoration reserves (Nordel)
- Aggregation of control areas into balancing areas (Nordel, DE, NL)

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Balancing Area</th>
<th>Total system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td>NO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO2</td>
<td>1200</td>
<td>-1200</td>
</tr>
<tr>
<td>NO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td>1220</td>
<td>-1220</td>
</tr>
<tr>
<td>FI</td>
<td>865</td>
<td>-865</td>
</tr>
<tr>
<td>DK</td>
<td>580+620</td>
<td>-580-620</td>
</tr>
<tr>
<td>VET</td>
<td>640</td>
<td>-400</td>
</tr>
<tr>
<td>EON</td>
<td>830</td>
<td>-590</td>
</tr>
<tr>
<td>RWE</td>
<td>1000</td>
<td>-725</td>
</tr>
<tr>
<td>EnBW</td>
<td>540</td>
<td>-330</td>
</tr>
<tr>
<td>Netherland</td>
<td>300</td>
<td>-300</td>
</tr>
</tbody>
</table>
System balancing

Input:
- Power plant data
- Transmission system data
- Demand, Ex- & Import curves
- Hydro inflow, wind speeds

Model:
- Generation dispatch
- Water values
- Area prices

Output:
- Total production cost
- Area prices
- Optimal generation dispatch
- Transmission dispatch

EMPS
- Reserve procurement
- Reserve procurement cost
- Availability of regulating reserves

IRiE
- System balancing cost
- Regulating resource exchange

System imbalance:
- Demand forecast error
- Wind forecast error

Reserve requirements:
- Control area
- Balancing area
- System wide

Day-ahead market
- Water values
- Area prices
- Power plant data
- Transmission system data
- Demand, Ex- & Import curves
- Hydro inflow, wind speeds

Reserve procurement
- Water values
- Area prices
- Generation redispatch
- Reserve procurement cost
- Availability of regulating reserves

System balancing
- System balancing cost
- Regulating resource exchange
- Water values
- Area prices
IRiE - System balancing

Objective: least cost system wide generation and transmission redispatch to settle real-time system imbalances in each PTU

- Input: imbalance records (quarter hourly)
- No time dependencies (ramping, start up / shut down of units)
- Definition of non-spinning in addition to spinning regulating reserves
 => all installed generation capacity available for system balancing
Case studies
Integration of regulating power markets

• Studied years:
 – Wet year – hydro inflow = 244 TWh
 – Dry year – hydro inflow = 146 TWh

• Exchange of regulating resources: Case:
 – No exchange between control areas in Germany (I)
 – Exchange only in balancing areas (II)
 – System wide exchange (III – V)

• Regulating reserve procurement:
 – Procurement only in own control area (I – III)
 – Procurement in whole balancing area (IV)
 – Reserve procurement system wide (V)
Regulating reserve procurement

- Significant reduction of necessary redispatch for reserve procurement approx. 30%

- Procurement costs:
 - wet dry
 - 3: 91,92 436,1 M€
 - 4: 70,71 110,8 M€
 - 5: 49,81 88,12 M€
Reserve activation

- Reduction rationing / shutdown to nearly zero with exchange of regulating resources

- Imbalance settlement costs:
 - wet: 180 207 M€
 - dry: 96 113 M€
 - 3: 60 73 M€
Conclusion

• Decrease redispatch during reserve procurement by 30% => ample regulating reserves available in Nordic system
• Reduction reserve activation by 30% (imbalance netting)
• Gross exchange of balancing energy approx. 2 TWh – 40% of activated regulating reserves
• Significant reduction of reserve procurement and reserve activation costs
• Further work
 – Model with better grid representation
 – Improvement in description of reserve costs
 – Modelling of future scenarios – 2020/2030