RENEWABLEREINDEER Forskningsrådets ENERGIX – KPN-prosjekt

Revising and re-structuring the renewable energy system in Norway while preserving wild reindeer habitat functionality

RENEWABLEREINDEER Forskningsrådets ENERGIX – KPN-prosjekt

- Prosjektleder: Manuela Panzacchi, NINA
- Budget: 13 800 000 nok
- Project duration: 4 years, Aug 2015 2019
- Partners: 6 financing partners + 6 scientific partners (+...)
 - Disciplines: ecology, mathematics, software development, social sciences

..finne måter å tillate Norge å revidere og utvide fornybare energisystemer - spesielt vannkraft – og samtidig bevare villrein leveområder

FINANCING PARTNERS

Financing partners	Contact
SIRA KVINA KRAFTSELSKAP	Per Øivind Grimsby
NVE - NORGES VASSDRAGS- OG ENERGIDIREKTORAT	Jan Henning L'Abée Lund
MILJØDIREKTORATET	Kari Bjørneraas – Erik Lund
 Villreinprosjektet i Setesdalsheiene v/ Vest-Agder <i>Consortium of stakeholders:</i> National Road Administration (Statens vegvesen) Railroad Administration (Jernbaneverket) Tourist Organizations (D.N.T) Landowners Associations Steering Board for Setesdal Vesthei villreinområdet Hydropower industries: Statkraft Sira Kvina kraftselskap, Otteråens Brukseierforening Agder Energy Norsk Hydrop Produksjon Lyse Energi 	Kåre Paulsen

Lena Romtveit

SCIENTIFIC COLLABORATIONS

Scientific collaborators	fic collaborators Affiliation	
Audun Ruud, PhD	SINTEF ENERGI AS, Norway	WP4
Prof. Subhash Lele	University of Alberta, Canada	WP 1
Prof. John Fryxell	University of Guelp, Canada	WP 1, 2
Prof. Marco Saerens	Universite Catholique de Louvain, Belgium	WP2
Ilkka Kivimäli (PhD student)	University of Aalto, Helsinki	WP2
Prof. Ferdinando Villa	Basque Centre for Climate Centre, Bilbao, Spain	WP2
Hawthorne Beyer, PhD	University of Queensland, Australia	WP2
Siri Bøthun Naturforvaltning	Siri Bøthun	WP 3,4,5

BACKGROUND: HYDROPOWER IN NORWAY

- Hydropower developed *extensively* during the last century
- Concessions were granted *before* the legislation on Environmental Impact Assessment
 - Most concessions are/will be subjected to a relicensing process aimed at increasing focus on sustainability

- EEA Countries are expected to *increase their* share of renewable energy to 20% by 2020
 - Norway is asked to contribute to Europe's transition to a renewable energy system by serving as a "Green Battery" through pumped-storage hydropower

BACKGROUND: ENVIRONMENTAL ISSUES OF HYDROPOWER

Well-known and well-studied effects of hydropower

on freshwater ecosystems (~ salmon)

Foto © Bengt Finstad/NINA

BACKGROUND: ENVIRONMENTAL ISSUES OF HYDROPOWER

No studies on terrestrial ecosystems.

Foto: Jarle Lunde/Suldal.no

Are there really no environmental issues for terrestrial ecosystems??

Wild Reindeer migrations - «The Norwegian Serengeti»

- Norway hosts the last remaining populations of wild mountain reindeer
- Large herds, large spatial requirements (capable of the longest terrestrial migrations)

SUMMER

Ancient reindeer migrations

Pitfall traps (> 8000; 600 - 2000 yrs ago)

Hunting blinds

Photo: Per Hjordhøy

PITFALL TRAPS, AURSJØEN, SNØHETTA

ANCIENT VS. PRESENT RANGE & MIGRATIONS

Before industrialization: few panmictic, migratory populations

2015: 26 isolated pop. Few (?) migrations left

Major roads

Barrier to movement (blocked migration corridor)

Permeable barrier to movement (nearly blocked migration corridor)

MAIN ISSUE: FRAGMENTATION (rapidly increasing)

Still, Norway has ca. 30.000 deer. So, does it matter? Is long-term viability granted for all sub-populations? Well... it depends...

WEDEN

FRAGMENTATION: DOES IT MATTER?

Populations confined to smaller & "seasonally wrong" ranges:

- \Rightarrow Decreased carrying capacity (pop. must be kept at low densities to avoid overgrazing)
- \Rightarrow Increased vulnerability to stochastic events

Climate Events Synchronize the Dynamics of a Resident Vertebrate Community in the High Arctic Brage B. Hansen *et al. Science* **339**, 313 (2013);

Our work on Reindeer & Infrastructures

Our work on Reindeer & Infrastructures

Ecography 38: 001–011, 2015 doi: 10.1111/ecog.01075 © 2014 The Authors. This is an Online Open article. Subject Editor: Jorge Soberon. Editor-in-Chief: Miguel Araújo. Accepted 10 October 2014

Searching for the fundamental niche using individual-based habitat selection modelling across populations

Manuela Panzacchi*, Bram Van Moorter*, Olav Strand, Leif Egil Loe and Egil Reimers

Journal of Animal Ecology

Journal of Animal Ecology

Journal of Animal Ecology 2014

doi: 10.1111/1365-2656.12275

SPECIAL FEATURE: STUCK IN MOTION? RECONNECTING QUESTIONS AND TOOLS IN MOVEMENT ECOLOGY

'You shall not pass!': quantifying barrier permeability and proximity avoidance by animals

Hawthorne L. Beyer^{1*}, Eliezer Gurarie^{2,3}, Luca Börger⁴, Manuela Panzacchi⁵, Mathieu Basille⁶, Ivar Herfindal⁷, Bram Van Moorter⁵, Subhash R. Lele⁸ and Jason Matthiopoulos⁹

Predicting the *continuum* between corridors and barriers to animal

movements using Step Selection Functions and Randomized Shortest Paths

Manuela Panzacchi^{a*}, Bram Van Moorter^a, Olav Strand^a, Marco Saerens^b, Ilkka Kivimäki^b,

Colleen Cassady St. Clair^c, Ivar Herfindal^d, Luigi Boitani^e

Landscape Ecol DOI 10.1007/s10980-012-9793-5

RESEARCH ARTICLE

Learning from the past to predict the future: using archaeological findings and GPS data to quantify reindeer sensitivity to anthropogenic disturbance in Norway

Manuela Panzacchi · Bram Van Moorter · Per Jordhøy · Olav Strand

A road in the middle of one of the last wild reindeer migration routes in Norway: crossing behaviour and threats to conservation

Manuela Panzacchi¹, Bram Van Moorter¹ & Olav Strand¹

Rangifer, 33, Special Issue No. 21, 2013: 15-26

Lesson N. 1: WILD REINDEER TEND TO AVOID INFRASTRUCTURES

Norwegian Institute for Nature Research

Lesson n 2: Direct, Indirect & Cumulative Effects

Infrastructures are spatially correlated, and reindeer respond to the *network* of infrastructures

INDIRECT EFFECTS:

- power lines
- private cabins
- hydroelectric dams

Lesson N 3: Response depends on the *intensity* of disturbance

Rondane north

Vegard Gundersen

People counters

IMPACT OF HYDROPOWER ON WILD REINDEER (& possibility of mitigation)

Construction of reservoirs \Rightarrow area flooding \Rightarrow habitat loss, temporary (?) barriers

IMPACT OF HYDROPOWER ON WILD REINDEER (& possibility of mitigation)

Unsafe ice, steep banks, strong current \Rightarrow barriers, habitat fragmentation

We estimated that in spring the probability of reindeer walking on a reservoir is only 2% (barriers), while it is 24% higher for natural lakes

Panzacchi et al, Journal Animal Ecology 2015

IMPACT OF HYDROPOWER ON WILD REINDEER (& possibility of mitigation)

Surrounding roads, tourist cabins, private cabins, power lines, ski tracks, hiking trails.. \Rightarrow hab. loss & fragmentation

Infrastructure network - Setesdal Ryfylke: Bjåsjø

The RenewableReindeer project

Objectives

- Predict the impact of the network of hydropower plants and coexisting infrastructures on wild reindeer
- Assist the process of identifying concrete, cost-efficient, socially accepted mitigation options for increasing sustainability of the renewable-energy system in Norway under different land-development scenarios

RenewableReindeer: Ecological & Societal Challenges

Ecological & technical goals

- Identify areas of higher/lower importance for reindeer
- Develop robust models to predict response to specific infrastructures / mitigation measures / development plans
- Develop tools to guide Environmental Impact Assessment / sustainable land planning

Socio-political & economic goals:

- Develop strategies to reconcile contrasting socio-economic interests
- Evaluate the appropriateness of regulatory framework / governance for implementing mitigation measures
- Solve scale issues: discrepancy between large-scale, holistic approach needed for reindeer conservation, and the narrow-focus of the relicensing process

Work Packages

WP 1 - Manuela Panzacchi, NINA Habitat suitability and fragmentation

WP 2 - Bram Van Moorter, NINA Predictive tools for Corridors & Habitat Functionality Develop models and simulation tools to quantify impact of hydropower and to predict the effect of suggested mitigation options

WP 3 – Olav Strand, NINA User Involvement and new arenas for dialogue (3 areas: Setesdal Ryfylke, Nordfjella, Snøhetta) Closely assists model development and suggests mitigation options to be tested in WP2, and provide a platform for WP4

WP 4 – Audun Ruud, SINTEF Science-policy interface – the regulatory challenge Review and suggests improvements in regulatory & multi-governance framework

WP 5 – Manuela Panzacchi, NINA Dissemination, guidance and support for EIA Wrap-up everything and make it available and useful for society

WP 1-2: "ECOLOGY"

- 1. Model habitat suitability, barriers and corridors to movements
- 2. Develop a novel *Habitat Functionality* metric synthesizing the cumulative effects of infrastructures in terms of *habitat loss* and *habitat fragmentation*

WP 1-2: "ECOLOGY"

- 1. Model habitat suitability, barriers and corridors to movements
- 2. Develop a novel *Habitat Functionality* metric synthesizing the cumulative effects of infrastructures in terms of *habitat loss* and *habitat fragmentation*
- 3. Develop a *simulation platform* to predict the effects of mitigation/ land development on Hab. Function.
- 4. Rank mitigation options based on their sustainability (scenario approach)

WP 3-4-5: "SOCIETY"

- Study areas: Setesday Ryfylke, Nordfjella, Snøhetta
- Create *arenas for dialogue* to maximize relevance of the models (*Companion Modelling Approach*), secure public engagement, promote social learning
- **Scoping processes** to facilitate dialogue, minimize conflict potential, and suggest a set of realistic mitigation options

• Outreach: training courses, seminars, handbooks, recommendations, and a Support Centre for reindeer-oriented impact assessment

Project start: 14th Arctic Ungulate Conference, Røros 2015

