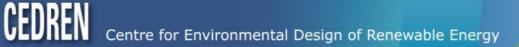
SusWater WP6 Status desember 2017


Uni Research

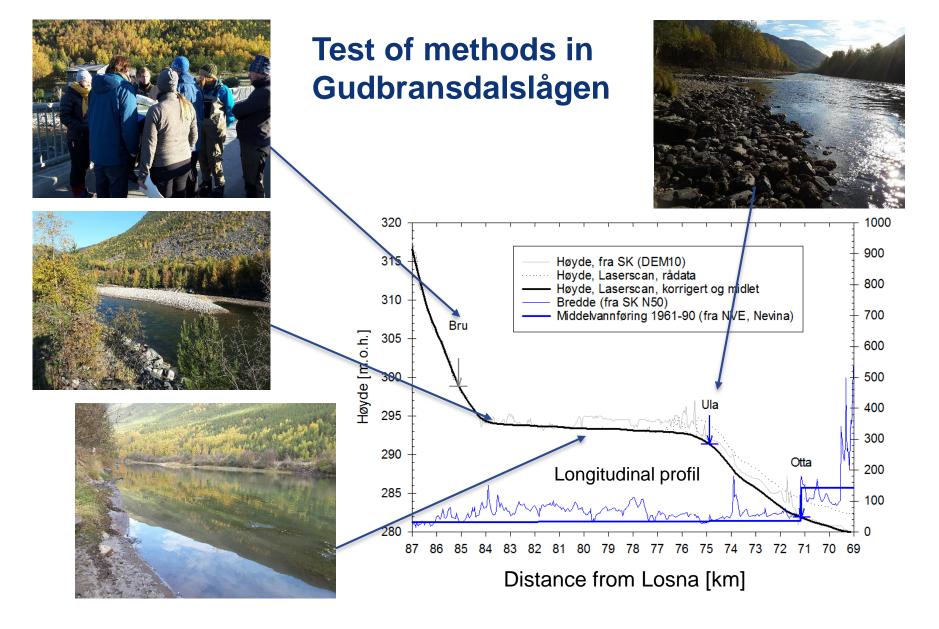
Mesohabitater / strømningstyper

Class	Code	Description
1		Near-natural
2		Slightly modified
3		Moderately modified
4		Extensively modified
5		Severely modified

Leveranser WP6

Workshops

- Forsker-workshops
- Nordisk vannforvaltning
- EU WFD Ad-hoc task force HyMo
- Notater og rapporter
 - Test av metoder i Lågen og Surna
 - Tilpasning av CEDREN-metodikk
 - Oversikt over internasjonale metoder
- Best practise håndbok: Tiltak for miljødesign
- Anbefalt metodikk for karakterisering og klassifisering av HyMo



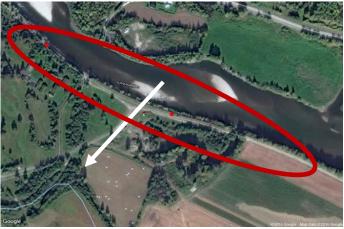
Tiltakshåndbok for bedre fysisk vannmiljø: God praksis ved miljøforbedrende tiltak i elver og bekker

from Peggy Zinke, NTNU/SINTEF

Four categories of HyMo

Along the river - impacting lateral connectivity

Across the river - impacting longitudinal connectivity


Centre for Environmental Design of Renewable Energy

Inside the river - impacting in-channel habitats

Lateral connectivity and embankment

Along the river

- Access to floodplain, side arms and oxbow lakes
- Possibility to move laterally
- Erosion and sediment balance impacts
- Riparian zone
- Channelization
- Incision

Indicators:

- % of river length with levees (above land surface)
- % of river length with embankment
- % of river length without trees along bank (only below tree-line)
- Incision need to measure in field

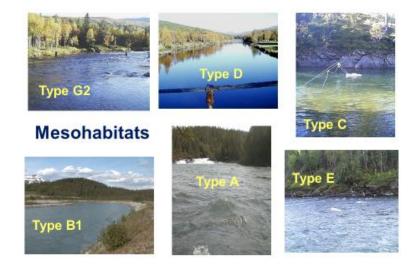
Changes across the river

Across the river

- Barriers for fish migration
- Barriers for sediments, ditrius and nutrients
- Fragmentation of habitats
- Have to include barrier in upstream water body

Indicators:

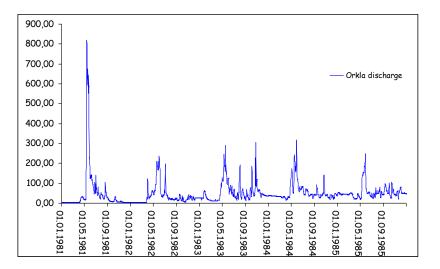
- Degree of fragmentation
- Barrier effect
- How much of the water body is backed up by weirs?
- Degree of regulation in catchment


Centre for Environmental Design of Renewable Energy

Changes inside the river

Inside the river

- Wetted area, surface pattern, water velocity, depth (mesohabitats/geomorphic units, i.e. river type in handbook)
- Substrate and shelter
- Structures in the river
- Removal of sand and gravel



Indicators:

- % of river length impacted by structures (aerial photos, maps, etc)
- % of river length of removed gravel/sand (recorded by local authorities)
- Substrate and shelter: Measure in situ
- Changes in river types: only possible if pre-impact studies exist

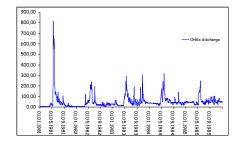
Changes in hydrology

- Total amount of flow
- Lowest weekly flow
- Floods of 1 and 10 years return period
- Peaking: Ratio, ramping rate and dewatered area
- Water temperature and ice



Calculate changes based on 30 years of flow data, with and without pressure

Comparing to reference


Along the river - impacting lateral connectivity

Across the river - impacting longitudinal connectivity

- Absence of levees, embankments, incision, impacting lateral connectivity
 - Absence of dams, weirs and constructions across the river

 Hydrological analysis before after by models

Comparing to reference - inside the river

- Data from reference existing
 - Measurements
 - Photos, databases
 - Assessments, investigations

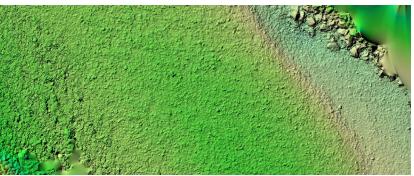
Data from reference absent

- Typology for reference
- Altitude
- Gradient
- Expected class

Table 20. Classification of river classes based on physical criteria and obtained by the pooling of mesohabitats (table 19).

River class	Mesohabitat	River surface	Gradient	Water velocity	Water depth
Glide	A+BI+B2	Smooth	Moderate	Fast	Shallow/Deep
Pools	С	Smooth	Moderate	Slow	Deep
Shallows	D	Smooth	Moderate	Slow	Shallow
Whitewater	E+F	Turbulent	Steep	Fast	Deep/Shallow
Rapids	H+GI+G2	Turbulent	Moderate	Fast	Shallow/Deep

Inside the river - impacting in-channel habitats


New technologies

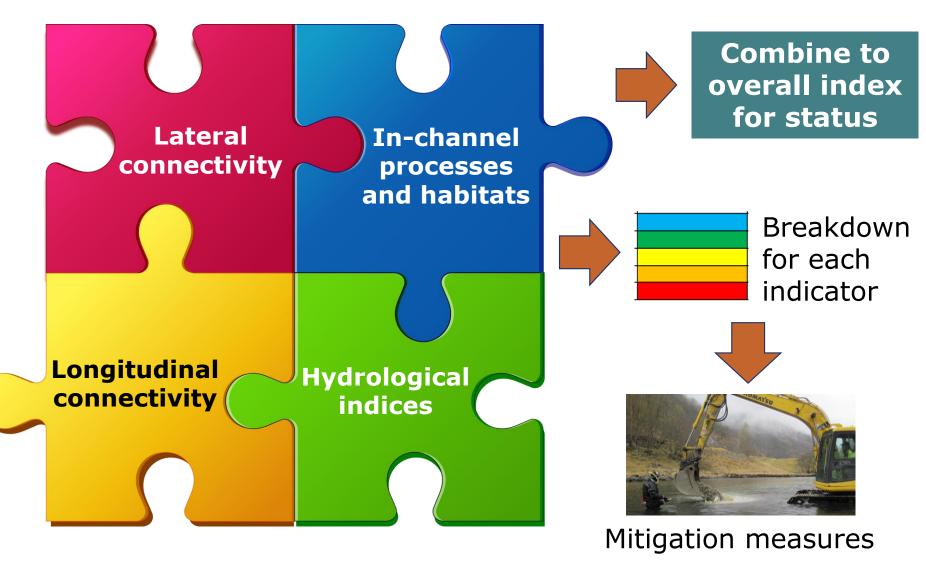
Picture from drone

Picture from airplane

Terrain model from drone picture

Green LiDAR image

from Agnès Moquet-Stenback, NVE



Indicators for HyMo

	Theme:	Importance	Why important	Metrics for change
sses and o de of	Lateral connectivity (levees)	High	Access to floodplain	% impacted river (max 50% each side)
	Embankments, channelisation	High	Lateral erosion	% impacted river (max 50% each side)
	Riparian zone	Low	Link terrestrial-aquatic zones	% river with higher vegetation (below treeline)
Proce along the sid	Incision	Medium		average incised river [m]
in ai	Removed or added gravel, rocks, sand	Low		% impacted river (local authorities)
	Structures in the river	Low	Hydraulic variation	% impacted river
de r bstr v)	River types according to environmental design	Medium	Distribution and variation in habitat	change according to expected
Inside (substi flow)	River types according to environmental design Porostiy of substrate	High	Shelter and habitat important for biota	Change in shelter class according to environmental design
	Fragmentation and barriers within the Water Body	High	Fish migration, sediment transport	Barrier effect after Sandlund et al
Barriers		Medium	Fish migration, sediment transport	Degree of fragmentation after Sandlund et al
Durriers			Fish migration, sediment transport	% of water body with backwater from barriers
	Fragmentation and barriers in upstream Water	Low	Fish migration, sediment transport	Degree of regulation (reservoir capacity/annual inflow)
str p.	Water temperatur	High	Growth of organisms	Change in growth season (when temp > 8°)
Chemistr y, temp.	Ice condition (surface, frazil and bottom ice)	Medium	Habitat	Change in surface and frazil ice
che Y, t	Supersaturation	Medium	Habitat	
	Total flow	High	Total amount of flow important for all topic	Change in total flow %
L	Low flow summer	Medium	Fish survival	Change in 7-day low flow for June-September in %
	Low flow winter	Medium	Fish survival	Change in 7-day low flow for November-March in %
Flo	Annual flood	Low	Ecosystem services	% change in max annual flood
	Dynamic flood	High	Maintaining geomorphic processes	% change in frequency for reference 10-year flood
	Short term flow variation: Ratio	Medium	Response for ecosystem	Ratio QHigh/QLow
	Short term flow variation: Rate of change	High	Response for ecosystem	cm/hour
	Short term flow variation: Dewaterd area	High	Stranding risk	% change in wetted area from QHigh to QLow

Weighing and combining

Takk for oppmerksomheten