HydroBalance User Meeting Trondheim 13-14 September 2016

Practical examples on how Norwegian Hydro could be an enabler of increased RES in North West Europe

Asbjørn Høivik Vice President Technology Lyse AS

Practical examples on how Norwegian Hydro could be an enabler of increased RES in North West Europe

- Lyse Production in brief
- New intermittent production and new flow patterns
- New interconnectors (NorthConnect)
- New operational requirements from the TSOs
- New solutions and designs (example from Lysebotn Power Plant)
- Concluding remarks

Hydro power in Lyse

Annual Generation:	6 032 GWh
Storage Capacity:	5 068 GWh
Installed Power:	1 599 MW

Lyse Produksjon is part owner in Sira-Kvina (41%) and Ulla-Førre (18%), the two biggest Norwegian Power Plants

The Challenge: Thermal baseload production transformed to cover residual load

What flexibility actually means?

Example from the Spanish system *March 3rd 2010*

Example from the German system *February 10th-16th 2014*

Gas plants (CCGT) (in Spain) and Coal fired plants (in Germany) now acting as balancing units – high costs, reduced operation hours and increased emissions

Estimated share and type of RES in national power generation by 2030 in Europe (source :Fraunhofer)

Flowpatterns more determined by intermittent RES production

Import

Export

Existing and planned HV-DC interconnectors from the Nordics

NorthConnect new private interconnector under developing Owners: Vattenfall AB, Agder Energi AS, E-Co Energi AS and Lyse AS

Wind Power Production in the North Sea Region (DE, DK, GB, IR) in 2012)

Observed Wind Energy Production in a system with **45600 MW** installed capacity (Stadium 2012)

Maximum: 31062 MW Minimum: 419 MW Typical: ca 10000 MW Capacity Factor: 0.18 Nordic production and demand in 2025

Challenges and opportunities for the Nordic Power system

For a typical single year (weather as 1982) and night hours

Future lower inertia in the power system represents a serious challenge

Two different problems occur when big production units are disconnected in «weak» power systems:

- The momentan change of frequency rate (RoCoF df/dt) increases
- The frequency drop (Δf) will increase lower minimum frequency.

Deliveries of secondary reserves over SK4 interconnector to Danish TSO (Energinet DK)

- Trade of system services (secondary reserves) over an interconnector for the first time in Europe
- Up to now modest quantities (+/- 50 MW Lyse share)
- Demonstrates that the concept works satisfactorily, and could be extended to Germany and elsewhere as interconnection capacity increases.
- Commercially this concept seems viable based on our experience so far

Lysebotn 1 Existing Hydro Power Plant Main characteristics

- Installed capacity 210 MW
- 6 units (3 x 30 MW + 4 x 40 MW)
- Horizontal double pelton runners
- Annual generation 1320 GWh
- Licence granted in 1948
- Construction works started immediately
- Successively put into operation in the period from 1953 until 1964
- Europe's biggest power plant when put into operation

Lysebotn new Hydro Power Plant

Main technical characteristics

- Installed capacity
- Head
- Consumption
- Generators
- Annual generation
- Load factor
- Catchment area

2 x 185 MW Francis 619 – 687 metres 2 x 30 m³/s 215 MVA , 13,8 kV 1500 GWh 0,46 316 km²

- Installed capacity: +77%
- Storage capacity: +14%
- Loadfactor reduced: 0.72 to 0.46
- Lysebotn 2 is designed to run in condenser mode operation thus providing inertia and other system services.
- From condenser mode operation, Lysebotn 2 will be able to ramp up to full production (370 MW) within 1 minute!
- €200 mill upgrading project (Norway´s 11. biggest hydro power plant)

To summarize:

- If Norways conciderable storage hydro power installations shall underpin EU and national climate goals, increased interconnector capacity is an absolut prerequisite
- Increased interconnector capacity will however inevitably lead to increased import in particular in periods with high RES generation which will have a serious negative impact on system operation in particular when load in the Nordic system is low (during summer nights)
- The storage hydro power plants when restored and refurbished should if possible be redesigned to meet the new operational requirements from the TSO (similar to Lysebotn):
 - Higher power output (lower load factor)
 - Condenser mode operation capability
 - Shorter ramp up times
- Pumped Hydro Storage plants require higher price differencials and both development of markets and business models that will underpin such development

