SEDIMENT EROSION IN HYDRAULIC TURBINES Biraj Singh Thapa, PhD Candidate (August 2013) Department of Energy and Process Engineering

NORWEGIAN HYDROPOWER CENTRE

Supervisors: Prof. Ole Gunnar Dahlhaug Prof. Torbjørn Kristian Nielsen Prof. Bhola Thapa (KU)

Beauty Comes With Hidden Price!

23 MW*2 Francis runner at Chawa Power plant, Chile

48 MW*3 Francis runner at Kaligandaki Power plant, Nepal

250 MW*6 Francis runner at Nathpa Jhakri Power plant, India

Sediment erosion damage in guide vanes and facing plates

A view of November evening in Nepal

Research Problem

Sediment erosion damage in guide vanes and facing plates

Research Methods

Design of Flow Cascade

NORSK VANNKRAFTSENTER

Test Setup

Measurement Sections

Points for 14 pressure taps along GV pressure and suction surfaces Point for a pressure tap at runner inlet position Test Section Back Cover

Waterpower Laboratory NTNU

Measurement Along GV Mid Span

Pressure along GV surface

Contour plot of velocity (PIV)

Flow Along Clearance Gap

Correlating with Observations

Photo Source: Ole G. Dahlhaug

- NACA 0012 Profile used for guide vanes
- High Pressure difference towards trailing edge
- More erosion in trailing edge walls due to high velocities and secondary flows
- Formation of clearance gap, inducing strong crossflow
- Increases relative velocity and reduces radial velocity at runner inlet towards hub and shroud
- Thus higher erosion in runner hub and shroud at inlet and lowered runner efficiency Other factors as RSI, Blade leaning design and operational parameters are equally important

Thank You!!!

NORWEGIAN HYDROPOWER CENTRE

biraj.s.thapa@ntnu.no

