

Present and future environmental impacts of hydropower on Norwegian lakes *HydroBalance project*

SHF Grenoble – 16/3/2016

Julie Charmasson, SINTEF Energy Research, Trondheim, Norway Antti Eloranta, NINA, Trondheim, Norway Ingeborg P. Helland, NINA, Trondheim, Norway

1. CEDREN HydroBalance: Facts

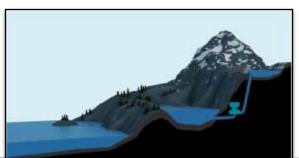
- CEDREN project
- **2013-2017**
- 24,864 MNOK (about 2.7 mill. EUR)
- Research partners (11)
 - SINTEF Energy Research,
 - NTNU: Norwegian university of Science and Technology,
 - NINA: Norwegian Institute for Nature Research,
 - UiO: University of Oslo,
 - UiT: University of Tromsø,
 - NIVA: Norwegian Institute for Water Research
- Funding:
 - Research Council of Norway
 - Statnett,
 - Sira Kvina kraftselskap,
 - Statkraft,
 - EnergiNorge,
 - Agder Energi,
 - BKK,

- ECN: Energy Research Centre of the Netherlands,
- University of Waterloo,
- University of Exeter,
- University of Aachen & E.ON
- EdF: Electricite de France
- Listerrådet,
- EdF: Electricite de France,
- NVE (Norwegian Water Resources and Energy Directorate)
- E.ON,
- ECN: Energy Research Centre of the Netherlands,

1. CEDREN HydroBalance: Facts

Feasibility of large scale development of energy balancing and storage from **Norwegian** hydropower in the **future European** electricity market with respect to the **power system**, environmental aspects, economic viability and social acceptance.

WP 2 Demand for energy balancing storage		WP4 Environmental impact of operation schemes for balancing
Re fr	/P 1 padmaps for balancing om Norwegian /dropower	WP 5
relevant business models		Social acceptance and regulatory framework



1. Future energy demand and water level fluctuations

Integration of renewable from intermittent sources

Future energy demand: more flexibility, more storage

- New operational regimes
 - → More rapid, intense and frequent water level fluctuations (WLF)
 - → Pump-storage

www.cedren.no/Projects/HydroBalance

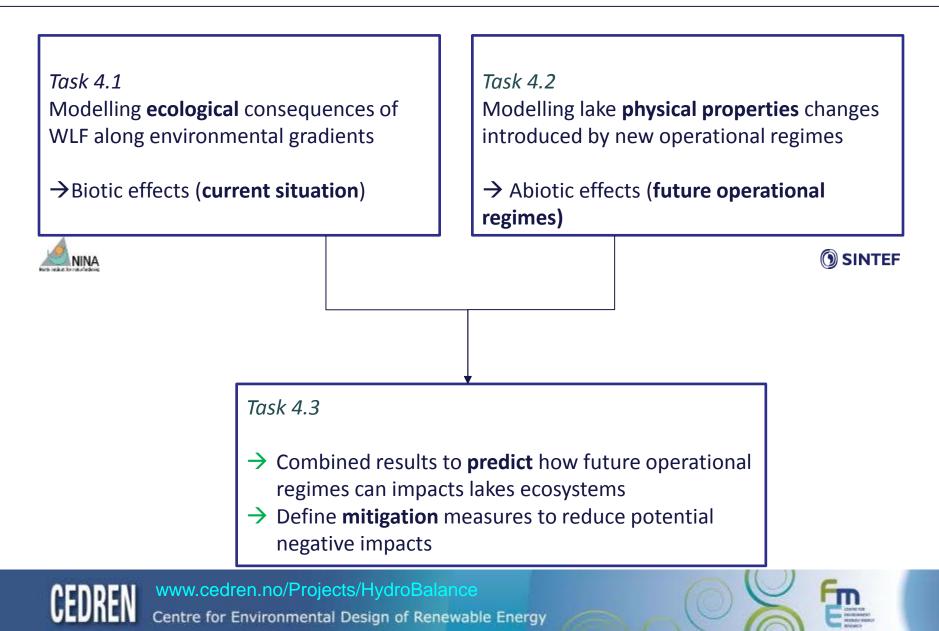
1. WP4 focuses on HP reservoirs

- Environmental impacts of new operational regimes in reservoirs
 - Most of studies in rivers
 - > 900 reservoirs (lakes) in Norway
 - Also used as recreational area

1. Potential impacts of water level fluctuations in reservoirs

Abiotic consequences

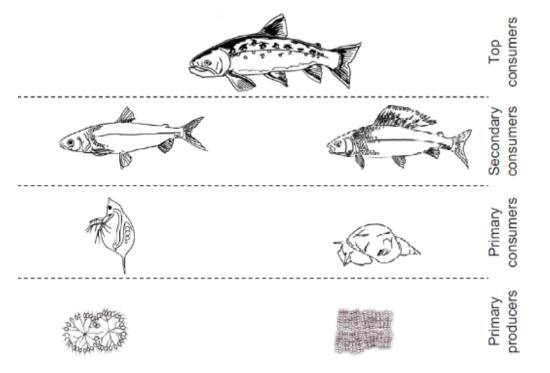
- Water temperature
- Stratification
 period/duration/intensity
- Ice cover thickness/period/duration...
- o Water quality


Biotic consequences

- Biological productivity
- Species composition
- $\circ \ \ \, \text{Fish diet}$
- $\circ~$ Growth and reproduction...

1. HydroBalance WP4: Environmental impacts of new operational regimes

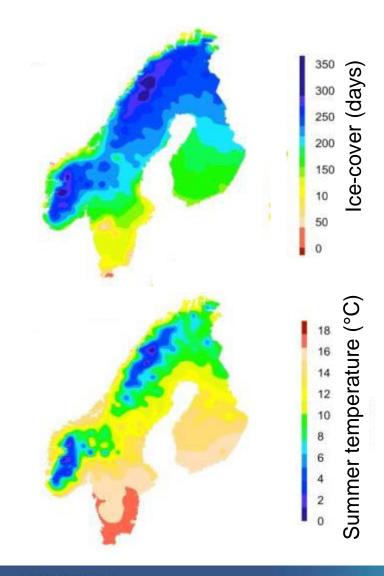
2. Biotic impacts of new operational regimes



www.cedren.no/Projects/HydroBalance Centre for Environmental Design of Renewable Energy

CEDREN

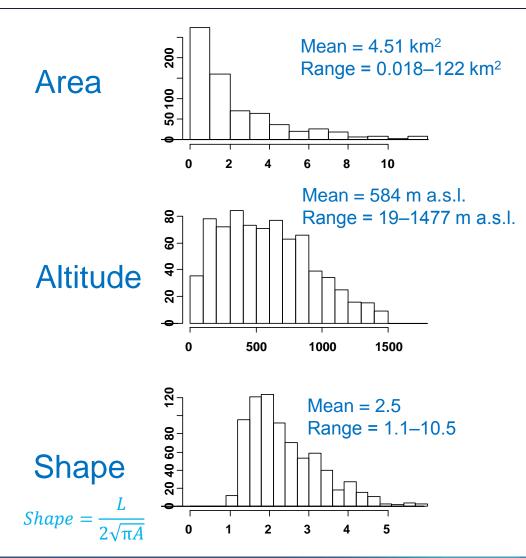
2. Focus on fish


Fish as top predator : bio-indicator for ecological status

2. Natural variation due to climate ... which impacts lakes ecological status

www.cedren.no/Projects/HydroBalance

2. Natural variation in drainage basin ... which impacts lakes ecological status



2. Natural variation in morphology ... which impacts lakes ecological status

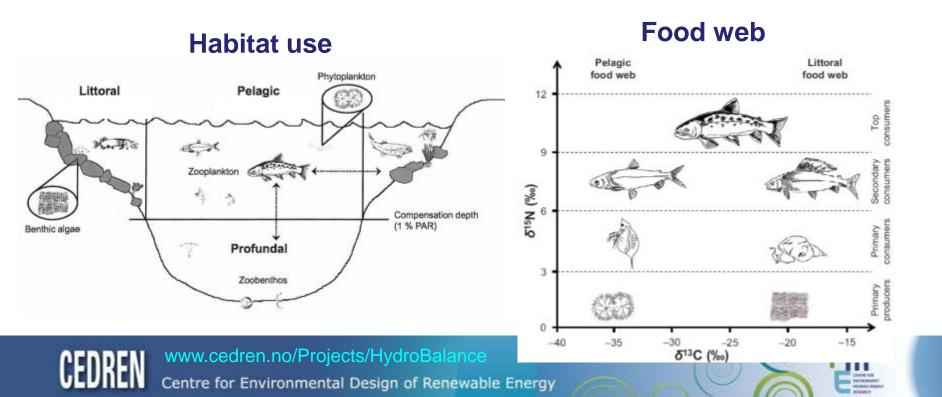
www.cedren.no/Projects/HydroBalance

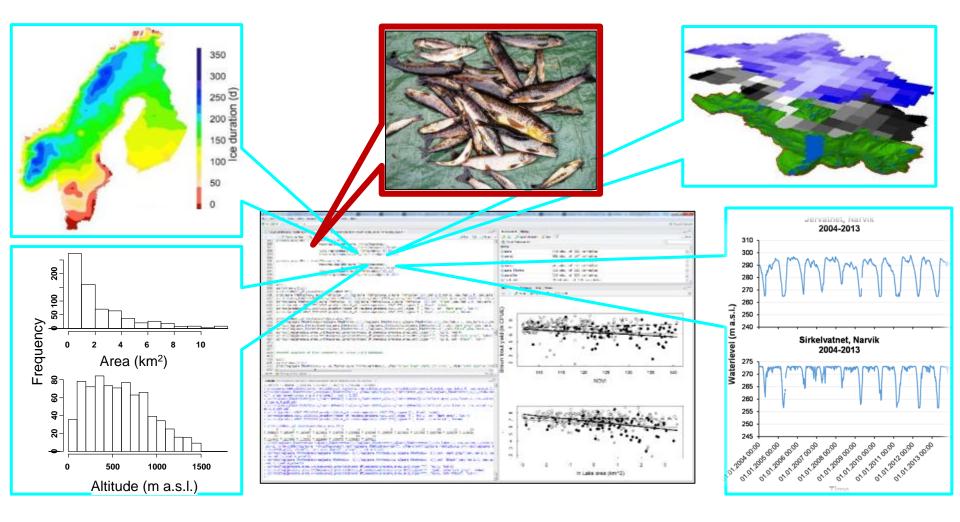
2. Natural variations in fish growth

How to separate effects from **hydropower** from **natural** variation?

2. Data collection

Large dataset from previous field campaign + Field work in 2014


- Compare natural lakes and regulated lakes (reservoirs)
- Understand large-scale trend along environmental variations


2. Data about fish population

- Fish communities: Density, Growth, reproduction, diet
- Understand the structure and the function of food chain
 - Stable isotopes analyses

2. Statistical analysis and modelling of interactions

... for separating impacts from hydropower and natural variations

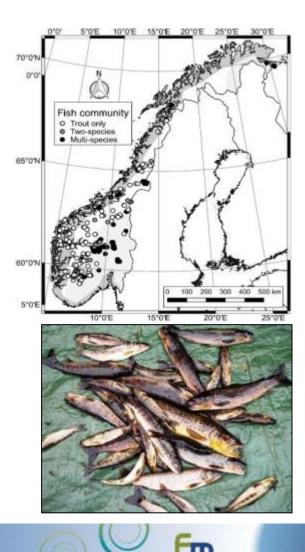
CEDREN

www.cedren.no/Projects/HydroBalance

2. Some results:

Fish abundance along environmental gradients

- Lower trout abundance in regulated lakes
- ...but also when:
 - 1) Competitive & predatory fishes are present
 - 2) Littoral zone is small and dominated by other fishes
- Trout abundance higher in lakes with productive catchments
 - ightarrow but only when competitors are absent


Journal of Animal Ecology 2016, 85, 273-282

doi: 10.1111/1365-2656.12461

Community structure influences species' abundance along environmental gradients

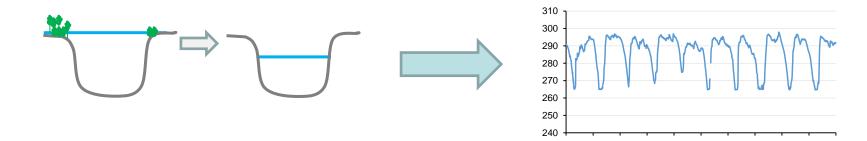
Antti P. Eloranta¹*, Ingeborg P. Helland¹, Odd T. Sandlund¹, Trygve Hesthagen¹, Ola Ugedal¹ and Anders G. Finstad^{1,2}

2. Some results: *WLF impacts on Arctic charr niche*

- More turbid water and limited littoral production has resulted to:
- 1) Decreased use of littoral food and habitat resources

Centre for Environmental Design of

2) Increased infections by zooplanktontransmitted parasites



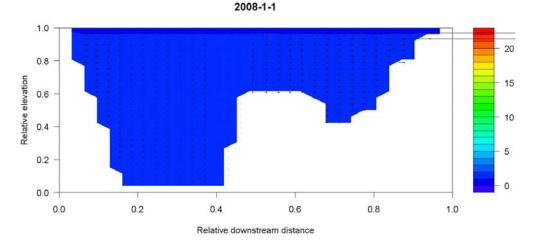
Eloranta et al. (2016) Water level fluctuations affect niche use of a lake top predator. *Freshwater Biology*, in review

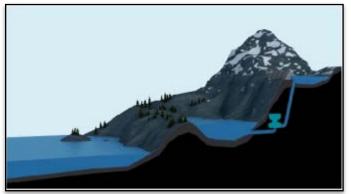
2. On-going work

Understand link between WLF and ecological status

Establish parameters for WLF and not only HRWL-LRWL

- Link WL timeseries to fish caught date
- Renforce/Establish relationships between large-scale variations by including more data-points


3. Abiotic consequences of new operational regimes

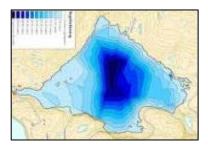


1. 2D Hydro-Dynamic modelling of a regulated reservoir and calibration

 \rightarrow water temperature and stratification characteristics

 \rightarrow Ice cover period-thickness-duration

- 1. 2D modelling of a regulated reservoir and calibration
- Extension of the existing case to additional cases


Reservoirs types:

- Regulated amplitude
- o Area
- Mean depth
- Climate region

www.cedren.no/Projects/HydroBalance

	Area		0.75 – 2 km²		20 km²			> 45 km²			
Climate	ΔН	Mean Depth (m)	8-15	25	> 85	8-15	25	> 85	8-15	25	> 85
warm	2-5 m		WH-1a	WH-1b	WH-1c	WH-2a	WH-2b	WH-2c	WH-3a	WH-3b	WH-3c
	20 m		WM-1a	WM-1b	WM-1c	WM-2a	WM-2b	WM-2c	WM-3a	WM-3b	WM-3c
	> 40 m		WH-1a	WH-1b	WH-1c	WH-2a	WH-2b	WH-2c	WH-3a	WH-3b	WH-3c
mild	2-5 m		MH-1a	MH-1b	MH-1c	MH-2a	MH-2b	MH-2c	MH-3a	MH-3b	MH-3c
	20 m		MM-1a	MM-1b	MM-1c	MM-2a	MM-2b	MM-2c	MM-3a	MM-3b	MM-3c
	> 40 m		MH-1a	MH-1b	MH-1c	MH-2a	MH-2b	MH-2c	MH-3a	MH-3b	MH-3c
cold	2	2-5 m	CH-1a	CH-1b	CH-1c	CH-2a	CH-2b	CH-2c	CH-3a	CH-3b	CH-3c
		20 m	CM-1a	CM-1b	CM-1c	CM-2a	CM-2b	CM-2c	CM-3a	CM-3b	CM-3c
	>	40 m	CH-1a	CH-1b	CH-1c	CH-2a	CH-2b	CH-2c	CH-3a	CH-3b	CH-3c

Reservoir types:

Climate region Regulated amplitude Mean depth Area

- 1. 2D modelling of a regulated reservoir and calibration
- 2. Extension of the existing case to additional cases
- Run simulations of futrue operational regimes
 - o (present regime)
 - Big Storage
 - Niche Storage

Main scenario characteristics

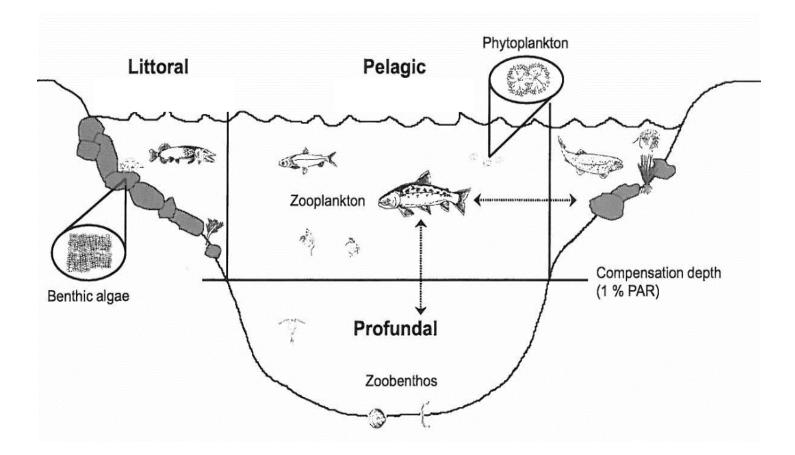
Key messages

Integration of renewable from intermittent sources
 → new operational regimes

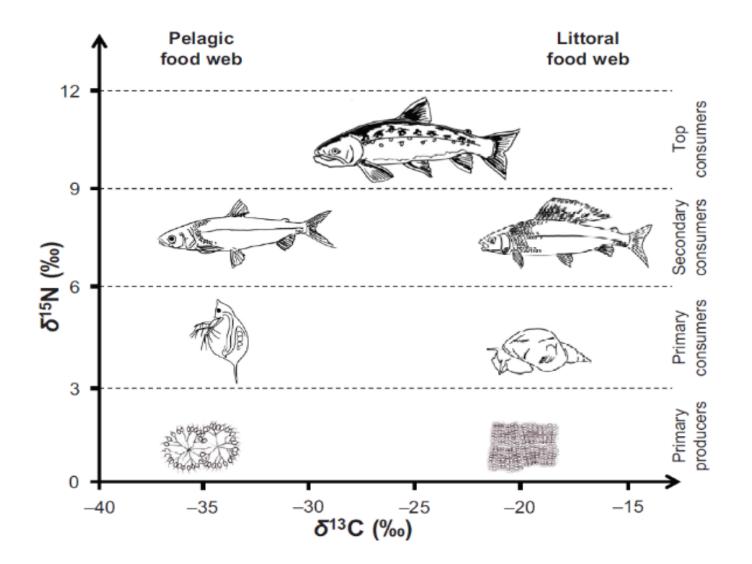
- Within HydroBalance project: environmental impacts of future operational regimes
 - Biological impacts: field work and stastistical analysis of present regimes

+

- Physical impacts: 2D modelling of new regulation regimes
- → **Predict** ecological impacts for future operational regimes
- Define mitigation measures to reduce potential negative impacts in the future


Thank you for your attention!

www.cedren.no/Projects/HydroBalance



Habitat use

Food chain

www.cedren.no/Projects/HydroBalance

Community structure influences species' abundance along environmental gradients AP Eloranta, IP Helland, OT Sandlund, T Hesthagen, O Ugedal, AG Finstad Journal of Animal Ecology

Water level regulation affects niche use of a lake top predator

AP Eloranta, J Sánchez-Hernández, IP Helland, PA Amundsen, S Skoglund, J Brush, M Power Manuscript to *Freshwater Biology* submitted

Effects of anthropogenic water level fluctuations in hydropower reservoirs – an ecosystem approach with a special emphasis on fish

Hirsch, P.E.,*, A.P. Eloranta, P.-A. Amundsen, Å. Brabrand, J. Charmasson, I.P. Helland, M. Power, J. Sánchez-Hernández, O.T. Sandlund, J.F. Sauterleute, S. Skoglund, O. Ugedal & H. Yang Manuscript to *Ambio* submitted

