Energy Storage Seminar Trondheim, 21/10/2014

Julian Sauterleute, SINTEF Energy Research

Large-scale balancing and energy storage from Norwegian hydropower – Potential and challenges

Julian F. Sauterleute¹, Atle Harby¹, Ånund Killingtveit², Eivind Solvang¹, Julie Charmasson¹, Michael Belsnes¹, Ove Wolfgang¹, Ingeborg P. Helland³, Jørgen K. Knudsen¹, Magnus Korpås²

- ¹ SINTEF Energy Research
- ² Norwegian University of Science and Technology
- ³ Norwegian Institute for Nature Research

Energy balancing using hydropower

Hydro storage vs. pumped storage

- Storage across entire time scale
- Efficiency up to 80% round-trip
- Most economic means of storing energy on large scale
- Various types of ancillary services

Hydropower in Norway

- Large number of reservoirs
- Storage capacity

20 reservoirs > 100 Mm³ both up- and downstream

about 85 TWh storage

Hydropower in Norway

Hydropower and wind power are complementary

Monthly average wind power generation and inflow to hydropower

Simulated wind power production in the North Sea area in 2030 95 000 MW installed capacity

Wind power North Sea area – July-September 2001

Wind Power North Sea area – January-March 2001

Potential in Norway

Increasing balance power capacity in

Norwegian hydroelectric power stations —

A preliminary study of specific cases in

Southern Norway

Solvang et al. (2011)

- New power stations
- Hydro storage + pumped storage
- Existing reservoirs and dams
- Outlet into reservoir or fjord/sea
- 20.000 MW possible by 2030

HydroBalance Project – Environmental, technical, economic and social challenges

Oct 2013 - Oct 2017

- Scenarios for different futures of the Norwegian hydro system in 2050
- Roadmap
- Analyses, simulations and case studies of
 - energy system
 - energy market
 - environmental impacts
 - regulatory framework and public acceptance

Scenario building

HydroBalance scenarios

Among most important uncertainties:

- 1. Share of variable renewable energies
- 2. Competition from other alternative flexible technologies

Conclusions

- Importance of time horizon
 - different types of services
 - different technologies
 - different power markets
- Potential of Norwegian hydropower
- Challenges to solve
 - Economic viability
 - Environmental impacts
 - Public acceptance

Thank you for your attention

Centre for Environmental Design of Renewable Energy (CEDREN)

julian.sauterleute@sintef.no

www.cedren.no

