

Ecohydraulic research within Centre for environmental design of renewable energy (CEDREN)

Atle Harby, CEDREN Director SINTEF Energy Research Norway

Centre for environmental design of renewable energy - CEDREN

Renewable energy respecting nature

Energi21 and The Parliament → 8 new research centres on environmental-friendly energy

Hydropower technology for the future

Environmental design of hydropower

Impacts on birds and wildlife from wind turbines and power lines

Reconciling environmental and energy policy concerns

CEDREN will deliver

Knowledge about renewable and sustainable energy production

CEDREN will deliver

2. Innovation and new opportunities for renewable energy solutions

CEDREN will deliver

3. Outstanding dissemination and targeted communication of processes and results

PhD and Post doc

International collaboration

- Research and education
- Authorities
- Seminars, workshops
- Together with Norwegian industry
- Case-studies

Associated research partners

Scientific Committee

Klaus Jorde KJ Consult/SJE Silke Wieprecht Uni Stuttgart Daniel Boisclair Univ. Montreal

*

CEDREN key figures 2011

- Total costs: 64,6 Mill NOK
- 110 scientists and students working
 - SINTEF Energi 34
 - NINA 41
 - NTNU 14
 - LFI 5
 - NIVA 4
 - Uni Research 12

Roel May

Helge Skoglund

Maxim Teichert

16 PhD og 4 post-doc

Dams

- Migration barrier
- Loss of connectivity
- Less access
- Loss of biodiversity

Degraded habitat in bypassed sections

Change in downstream flow regime

Landscape effect Impacts on wildlife

Foto: NINA

Greenhouse gas emission control

Resettlement

How to mitigate all this?

Flow and the environment

Flow and the environment

Flow and the environment

flow

Alternatives

1. Investigate status

Compare to other rivers

Guess

In situ study

Laboratory

Model simulation

How much water is needed?

EnviDORR

<u>Spawning – site chosen by the female</u> Substrate Velocity Depth Partner

Foto: Uni Miljø v/Barlaup

Spawning redd for Vosso salmon (110 cm): - grain size > 64 mm. - depth 25-30 cm

Normal egg survival > 80 %

Foto: LFI v/Barlaup

Large spawning fields

Foto: LFI-Unifob v/Wiers

Small patches of spawning grounds

Foto: Uni Miljø
Small spawning site in Bjoreio

Foto: LFI-Unifob v/Barlaup

Vøringsfossen – one of Norway's highest rated tourist attractions

CEDREN Centre for Environmental Design of Renewable Energy

Bjoreio – water diverted for power production

Flow at spawning time

During winter

Egg survival and water depth 2004

Simple solution.....

How much spawning area is enough?

Quantifying the effect of spawning area on sea trout production

- Strong correlations between river wide juvenile density
- and the percentage river area suitable for spawning
- and the distribution of spawning grounds °
- Guidelines for river restoration and mitigation.
- Presentation today, 17:00, A

s(spawn.area,2.06)

150

100

50

"temperatures at swim-up should be > 8 C "

..and in a natural stream!

...and under peaking and stable conditions in semi-natural streams

....focus on hydropeaking

Photo: Roar Lund

Centre for Environmental Design of Renewable Energy

Smolt migration River Mandal

Torbjørn Forseth, Hans-Petter Fjeldstad, Ingebrigt Uglem Knut Alfredsen & Thibault Botssy

Safe road:
2003: 10%
Goal: 90%

• Wrong route:

When do the smolts arrive and which route do they chose?

Telemetry: 250 smolts (2003, 2004 and 2008)

Impacts of strobe lights

Smolt timing model

 $\ln(Smolts) = \ln(MeanSmoltNumber) + Const + \beta_1 \times Tempsum + \beta_2 \times Temp + \beta_3 \times Tempdiff + \beta_4 \times Discharge + \beta_5 \times Dischargediff + \beta_6 \times \ln(Discharge) + \beta_7 \times \ln(Temp) + \beta_8 \times Days$

Predictions from route model Likelihood for bypass migration $\log it(\pi) = \log \left(\frac{\pi}{1-\pi}\right) = \beta_1 \times Total + \beta_2 \times Share$

		Total discharge (m ³ s ⁻¹)											
		20	30	40	50	60	70	80	90	100	110	120	130
ortion of total discharge in bypass (%)	10	70	63	55	47	39	31	25	19	14	11	8	6
	20	76	70	63	55	46	38	31	24	19	14	11	8
	30	82	76	70	62	54	46	38	31	24	19	14	11
	40	86	81	76	69	62	54	46	38	30	24	18	14
	50	89	86	81	76	69	62	54	45	37	30	24	18
	60	92	89	86	81	75	69	61	53	45	37	30	23
	70	94	92	89	85	81	75	68	61	53	45	37	29
Prop	80	96	94	92	89	85	81	75	68	61	53	44	36

Fjeldstad et al., 2012

2008: • 96 fish tagged • 61 mic alectorit from

lake Mannflåvatn (64 %)

1961-90 vs 2040-71 scenario

Model verification from Timalsina et al. (in prep)

IB-salmon

L. Sundt-Hansen, R. Hedger, O. Ugedal, O. Diserud, A. G. Finstad, T. Forseth, L. Tøfte & J. Sauterleute

The Mandal River

Water temperature

Flow

Smolt age control

Smolt age scenario

- Salmon juveniles grow faster, smoltify younger
- Increased mortality in summers due to reduction in wetted area
- Reduced recruitment and reduced production of salmon in future scenario
Seasonal requirements

Environmental impacts of rapid and frequent flow changes

Knowledge about how, when and where rapid variations in power production may be done with acceptable impacts on the ecosystem.

Physical processes

Biological processes

Mitigation

- Hydropower operation with rapid flow fluctuations
- Physical effects of highly unsteady flow
- Environmental effects of highly unsteady flow

Numerical approach

Example Nidelva River 4km upstream of Trondheim

- Hydropower peaking scenario
- Inflow decreases from 150m³/s to 50m³/s
- Simulation with Star CCM+ (7.600.000 cells)
- \rightarrow slowing down
- \rightarrow wetted area decreasing
- → main streamline shifting sideways

Physical experiments

3D Hydraulic model simulation and results validation

Star CCM+:

- Commercial 3D code based on the Reynolds-averaged Navier-Stokes equations, k-epsilon turbulence model
- Free water surface calculation by "Volume of Fluid" Method

Discretization

- 850 000 cells on rectangular mesh
- 0.35 x 0.35 x 0.175 m

<u>Analysis</u>

- Steady Flow at 2, 10, 16 and 20 m^3/s
- Unsteady Flow Analysis

Verification

 Observed vs simulated velocity profiles and water lines

3D Hydraulic model simulation and results validation

Steady simulationResults:

3D Hydraulic model simulation and results validation

Unsteady Simulation Results:

Effects on bentic macro-invertebrates

Hydropeaking operation

Modification of the habitat

Effect on

- biomass
- abundance
- behaviour
- life cycle

Qualifying and quantifying this impact to define locally adapted mitigation measures

Modeling the suitability for benthic macro-invertebrates in Surna River

- One site upstream power plant
- One site downstream power plant (affected by hydropeaking)

Suitability for *Limnius spp.* at the site affected by hydropeaking

 $Q = 53 \text{ m}^3/\text{s}$

Included parameters:

- Water depth
- Substrate type
- FST-number

 $Q = 15.4 \text{ m}^3/\text{s}$

- Frequent drops in water level down to 15.4 m3/s
 - → decrease in suitable habitat

Fish: Experimental setup in Ims

Results: Winter

Wet weight - percentage of fat relationship, winter

9

σ

œ

~

ø

ω

4

5

Body fat [%]

Flow fluctuations had no effect on body fat

ŝ

base

Treatment

20

Experimental

25

Control

15

Wet weight [g]

10

expe

Percentage of body fat in each treatment, winter

8

0

contr

Treatment

Fish surviving stranding - experimental setup in Ims

Results: Winter

Survivers of stranding had significant less body mass

Growth of fish in peaking environment - experimental setup in Paltamo (Finland)

Results: Winter

ENVIRONMENT-FRIENDLY ENERGY

Results: Summer

Significant effects on:

- body weight → control fish 2.56 g (= 10.3%) heavier;
- body fat → control fish have 0.25 g (= 16.6%) more body fat

Linking Population and Habitat Model

Effects of hydropeaking on the Atlantic salmon populations...

Engineers' view Hydraulic Habitat Models

Biologists' view Population Models

...on large temporal and/or spatial scales

Linking Population and Habitat Model

Hydraulic Habitat Model CASiMiR stranding

> multivariate fuzzy hydraulic habitat

Population Model

mechanistic ecological population dynamic

Linkage concept

- identification of characteristic reaches
- if necessary 1D simulation to account for attenuation
- 3. assignment to 50m sequences

60%

3

Х

2

1

CASIMIR

stranding

IB-salmon

40%

Linking Population and Habitat Model

Hydropeaking in Europe

Development of a computer-based wave detector - Observed parameters

Parameters (Increase=IC and decrease=DC)

- Duration dt (min)
- Mean IC/DC [m³/s/min]

t (min)

- Maximum IC/DC [m³/s/min]
- Total IC/DC dQ IC/DC [m³/s/event]

Norwegian, Austrian and Reference Rivers Sum dQ_IC – Events 2008 (m³/s) (n=500)

Sum of discharge fluctuations; Increase-Events (m³/s) 2008

Hydro storage – a renewable battery

Norwegian hydropower

Natural lakes used as reservoirs

Multi-year reservoirs

Norway

- Hundreds of large reservoirs
- 20 reservoirs with more than 100 Mm³ both up- and downstream

Simulated wind production in the North Sea area in 2030 – 100 000 MW installed capacity

January - March

July - September

CEDREN Case study 2030

Lova - Bjergeelva Veggine The technical potential E albier Marbeinuten Districtures-REIVE Breise 5 Jeidet victoriation TVEITEANO Øystad Mikrokraftverk Storenut Vinjanuton Vela Ibis Thin Vinjar Su alsos HELGANES Million Snonuten STEINE Kaldafjellet Slagstad Mikrokraftverk STRAPA Unk duble Reina-TJØSTHEM Stofe Bara dalane 13 TJO AURDAL aftverk KI Borgh 6d Steinheil FIFTH VALSES Leixnuten Sata Slettabell Storafjell Skute Gronafjellet. Grasdalsheia OTD. Skin Ressam Sandsa Feinsnuten. Skorpa Slotteskurven Svanuten Strandda Hovestolen Gallingen Fiellstore Skinsstokn Januar 1 aftverk Ega Napen. Sulingen Ugleflotti HUNRITEL'AND Bykl Nyastolhei Skieinuten BYKLE Flom VATN 1012 Urevass nutane Hioricland Warkaten L LEW Holem 1kliberg Vasadalla nuen Bykleheiane SKARJE Bagde

The technical potential

Kaldafjellet

Reina-

datane

nation

I romadia ata

x=0 y=0

idanuten

Snonuten

hoia

Shataryapa

200000

Reales cord

WGS 1984 UTM Zone 33N

Mchads

in rahe

NorthDates

÷

*

.

andidate

Løva Bjergeelva

Subbala

Jeidet

Unk dukk

Aller Märbeinuten

Vinjanuten Vela II-lan

TJØSTHEM MOTO BARA

Vitin Vinjar Sul alsos HEL

STRAPA

TVEITE NO Øystad

ANES Miller

Slagstad

likrokraftverk

ikrokraftverk

RDAL

Centre for Environmental Design of Renewable Energy

Vassbergn ibba

Aurahorten

Lusafreia

Rossascn 1,05941845

Iglebu

8 Kilometers

Volenuten

Veggine

Storenut

EIVE Breise

other i a firm
Environmental impacts

Erosion

Threatening biodiversity ?

Impacts on fish?

Centre for Environmental Design of Renewable Energy

Unsafe ice conditions ?

Detailed simulations of **PSP** with outlet into Suldalsvatn

Simulations with GEMSS

Temperature C

10 m depth in summer - today

10 m depth in summer – with PSP Production phase

10 m depth in summer – with PSP Pumping phase

Results

- Intense vertical mixing through the water column
- Colder temperature in the downstream river Suldalslågen during summer and autumn if water comes directly from Blåsjø
- Strong currents appear next to the new power plant

Drawdown zone exposed – changed pattern?

10000

Water level variations

Water level variations

Social acceptance

Large plants – large impacts?

Long history of conflicts

Resistance formed the environmental movement

Source: Statkraft

Small plants – small impacts?

Accumulated effects?

An extreme example from China

Small hydropower (< 50 MW):

- More than 1000 plants built
- Producing 2.5 TWh/a

XXLarge Three Gorges:

- 1 huge plant
- Producing 96 TWh/a

In order to produce the same energy output from Three Gorges project, approximately **40 000 small** hydropower plants (< 50 MW) must be constructed.

What are the accumulated environmental (and social) impacts?

Results: Comparison of impacts

Comments to the results

- Small-scale HP scores 'worse' (more negative/less positive) on the following topics:
 - Ice conditions/local climate
 - Recreation
 - Fish
 - Nature resources

- Large HP scores 'worse' (more negative) in the category water temperature
- The scores differ with only one impact level

Is salmon more important than moss?

Who to assign values/priorities to the environment?

- Researchers?
- Management authorities?
- The majority?
- Other stakeholders?

Conclusions

- Rivers are smaller, shallower and narrower at the upstream end compared to the downstream end – most of the times
- Rivers are wet if they are not dry
- Bullet points are boring....

www.cedren.no

NATURHISTORISK MUSEUM UNIVERSITETET I OSLO

N/V4-

