CEDREN Seminar on Large Scale Balancing from Norwegian Hydropower

Julian Sauterleute SINTEF Energy Research

Sand, September 11th 2012

Simulating Pumped Storage Operation in Reservoirs Used for Balancing of Wind Power

Julian Sauterleute¹, Julie Charmasson¹, Atle Harby¹, Ånund Killingtveit², Eivind Solvang¹

¹ SINTEF Energy Research, Trondheim, Norway

² NTNU Norwegian University of Science and Technology, Trondheim, Norway

Pumped storage model

- Reservoir pairs in Southern Norway
- Balancing power capacity in addition to installed capacity
- Operation of existing power station remains unchanged
- Balancing power operation within current reservoir regulations
- Input data
 - Simulated wind power time series from North Sea
 - Observed reservoir water level and volume
 - → Current operational regime
 - ightarrow Natural inflow
- Time step: 1 day

Background

Increasing balance power capacity in Norwegian hydroelectric power stations – A preliminary study of specific cases in Southern Norway Solvang, E. et al. (2011)

- 20.000 MW possible by 2030
- Hydro storage + pumped storage
- Existing dams and reservoirs
- Outlet into reservoir or fjord/sea

() SINTEF

Report

creasing balance power capacity in orwegian hydroelectric power stations

Model purpose

1. Simulate magnitude of water level fluctuations

- 2. What determines the amount of balancing power?
 - 1. Turbine capacity
 - 2. Reservoir capacity
- 3. Basis for assessment of environmental impacts

Example cases

<u>Holen (Urarvatn–Bossvatn)</u>

<u>Rjukan (Møsvatn–Tinnsjø)</u>

ENVIRONMENT-

	Holen	Rjukan
Volume upper reservoir	253 mill. m ³	1064 mill. m ³
Volume lower reservoir	296 mill. m ³	204 mill. m ³

Assumptions

- Power stations
 - Reversible turbines
 - Energy equivalent [m³/kWh] adapted to nominal head
 - Efficiency 0.9

•		Holen	Rjukan
	Installed capacity	1400 MW	2800 MW
	Percentage of total balancing load	7 %	14 %

- Wind power to balance
 - Above or below 7-days moving average

Balancing power needs

Water level fluctuations

	Current		Simulated	
m/dau	Rate of	Rate of	Rate of	Rate of
m/oog	INCREASE	DECREASE	INCREASE	DECREASE
Median	0.05	0.12	1.10	1.23
P90	0.21	0.26	3.40	3.56

- Strong increase in rates of change in water level
- Shorter periods with high WL Longer periods with low WL

	Current		Simulated	
	Rate of	Rate of	Rate of	Rate of
m/day	stage	stage	stage	stage
	INCREASE	DECREASE	INCREASE	DECREASE
Median	0.07	0.07	0.22	0.21
P90	0.26	0.10	0.50	0.63

- Moderate increase in rates of change in WL
- Same seasonal cycle

Water level fluctuations

	Current		Simulated	
m/day	Rate of stage	Rate of stage	Rate of stage	Rate of stage
	INCREASE	DECREASE	INCREASE	DECREASE
Median	0.28	0.28	1.10	1.22
P90	1.11	0.78	3.04	2.70

- Strong increase in rates of change in water level
- Longer periods with higher WL

	Current		Simulated	
	Rate of	Rate of	Rate of	Rate of
m/day	stage	stage	stage	stage
	INCREASE	DECREASE	INCREASE	DECREASE
Median	0.03	0.04	0.22	0.27
P90	0.10	0.09	0.69	0.60

- Strong increase in rates of change in WL
- Different seasonal cycle

Number of changes in stage

Holen

Current vs. balancing power operation

Rjukan

Current vs. balancing power operation

Necessity for seasonal regulations?

Limiting factors for providing balancing power demand

Balancing demand [GWh/day]

Holen Rjukan Limiting factors Limiting factors Turbine UPPER UPPER **Balancing** LOWER **Balancing** Turbine LOWER demand demand capacity capacity reservoir reservoir reservoir reservoir can be can be met met % of days 77 % 12 % 4% 7% % of days 76 % 12 % 1% 11 %

Limiting factors for providing balancing power demand

Rjukan

Required balancing power can be provided on 77 % of all days 76 % of all days

Conclusions

- Simulated courses of reservoir filling similar to current patterns
- Speed of water level changes increases
- Higher number of changes from increasing to decreasing water level and vice versa
- Seasonality of water level rates may change
- Limiting for provision of balancing power for these cases
 - Turbine capacity during pumping
 - Lower reservoir or turbine capacity during generation

Thank you for your attention!

julian.sauterleute@sintef.no www.cedren.no

