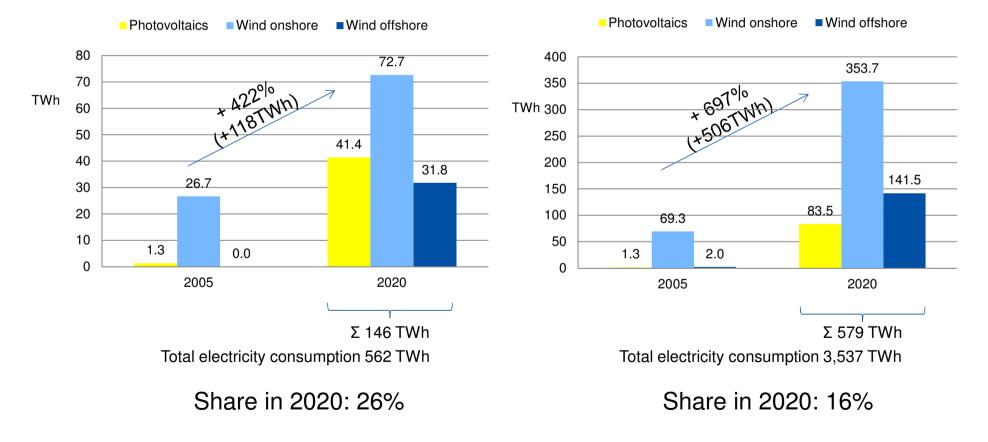

Germany's Energy Turnaround Renewable energy, storage and transmission needs close or far from the market 11-13 September 2012, Sand, Norway Jan Bruhn, RWE Innogy GmbH Dr. Hans-Christoph Funke, RWE Innogy GmbH The energy to lead

RWE Innogy bundles the renewable activities and competencies across the RWE Group

Source: Fact Book, RWE Innogy 31.03.2012, p.9

Germany's Energy Turnaround Agenda

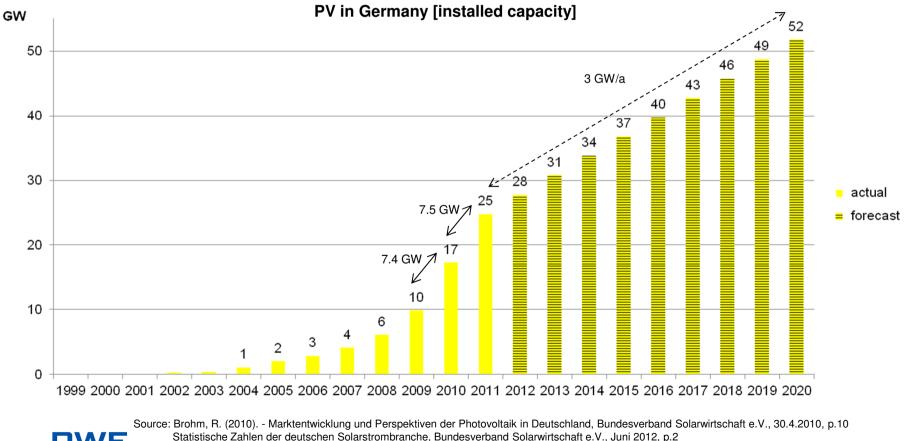
1. Fluctuating generation


- 2. Storage and transmission needs
- 3. Energy market discussion

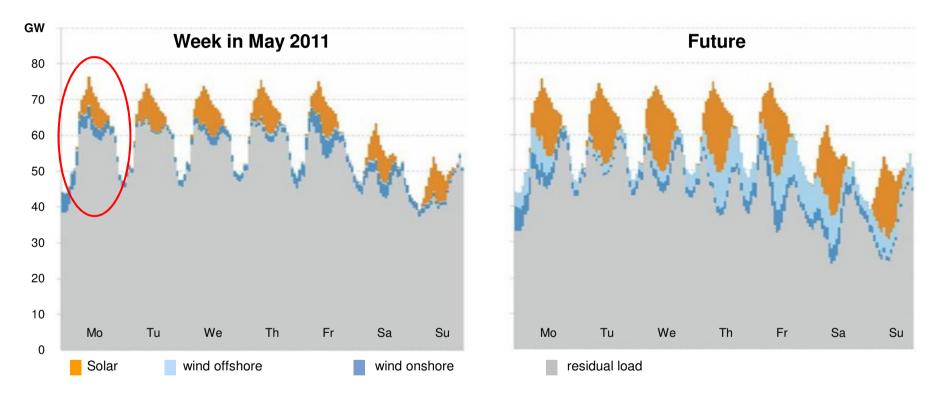
Increasing fluctuation of generation will challenge the future power supply

Germany's fluctuating generation

EU-27 fluctuating generation

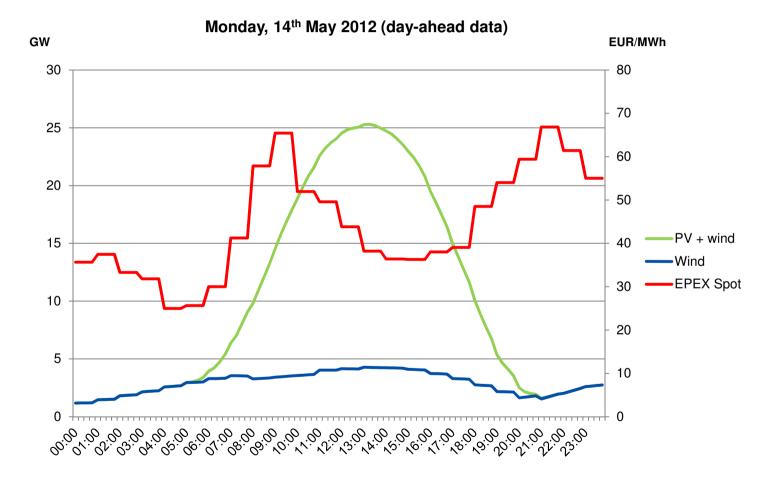


Source: EU-27 National Renewable Energy Action Plans Wilkes, J. et al. (2011) - EU Energy Policy to 2050, EWEA, March 2011, pp.37-40


Germany focuses on strong growth of PV capacity

- > Anticipated annual growth of PV before 2010: 1.7GW | after 2010: 3.5GW
- > Actual PV growth in 2010 and 2011: 7.5GW / year
- > 52GW in 2020 = 65% of Germany's peak load of 80 GW in 2020

PV already influences the operation of power plants

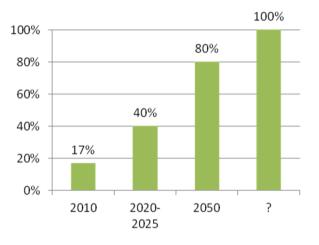


- > High PV generation \rightarrow residual load decreases \rightarrow low electricity price
- > Pumped-storage in the past: charging discharging (1 cycles)
- > Pumped-storage in the future: charging discharging charging discharging (2 cycles)

Source: Gohsen, D. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign , RWE Innogy, 24.7.2012, pp.9-11 Wirtschaftlichkeit von Pumpspeichern im Strommarkt, Workshop enervis , März 2012

High RE capacity significantly influences the electricity market price and operation of storage plants

Source: European Energy Exchange AG, http://www.transparency.eex.com/de/


Germany's Energy Turnaround Agenda

- 1. Fluctuating generation
- 2. Storage and transmission needs
- 3. Energy market discussion

A first approach – Germany's storage needs derived from the government's energy concept

Renewable energy percentage of gross electricity generation

	full storage of RE [scenario D]			limited storage of RE [scenario E] (50% installed capacity)		
	charging	discharging		charging	discharging	
	power	power	energy	power	power	energy
	[GW]	[GW]	[GWh]	[GW]	[GW]	[GWh]
short-term storage [hours]	28	26	140	14	14	70
long-term storage [days]	36	29	8,000	18	18	7,000
curtailed wind and PV	0 GWh/a			400 GWh/a		

Comparison of different storage usage for the 80% scenario

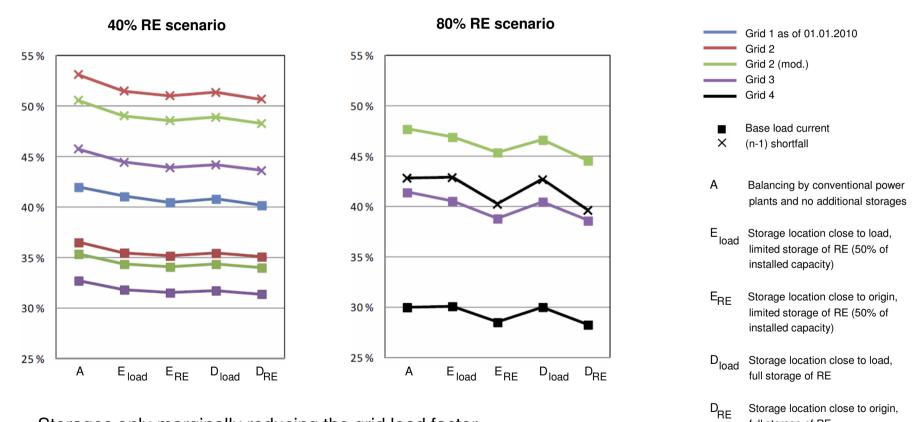
- Up to 40% almost no storage needs for RE integration
- From 80 to 100% RE, storage needs triples (GW and GWh)
- > Based on weather data of year 2007, including both extremes: wind calm and storm periods
- > Focus on Germany only: no imports, no exports
- > Focus on 100% system availability
- > No grid bottlenecks, grid is considered as a "copper plate"
- > Energy [GWh] more important than installed capacity [GW]
- > Mix of short-term and long-term storage is recommended

Source: Adamek, F. et al. (2012) - Energiespeicher für die Energiewende, VDE-Studie, VDE, June 2012, pp.5-37

No preference for storage locations close to load or origin

90		• • • • • • • • • • • • • • • • • • •	°	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			Amount of incorrect grid conditions			
80	I		ຈ ຊູຈິຈ ຈີວິດ ຊີຊີ		II	F				total
60					90000000000000000000000000000000000000	Γ		II	Ш	
50						A	15	9	57	594
40						E load	8	29	26	572
30						E re	0	21	34	565
20					III	D load	9	28	21	579
10						D RE	0	18	29	558
0 35	45 55	65	75	85	95 grid condition	Scen	nario reference:	see next page	•	

RE feed in [%] Grid conditions, 40% RE scenario, grid 2, DRE


The energy to lead

Incorrect grid conditions, 40% RE scenario, grid 2

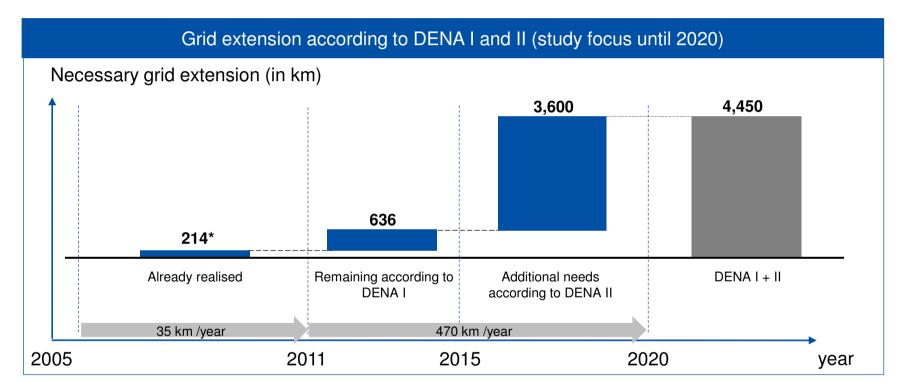
> Depending on the situation, sometimes a storage location close to the load is more beneficial than to the origin and vice versa

1. Fluctuating generation | 2. Storage and transmission needs | 3. Energy market discussion

Grid expansion is the best option to reduce the grid load factor

Expected values of highest load factor

> Storages only marginally reducing the grid load factor


The energy to lead

> Storages close to origin of generation show a slightly higher reduction of the grid load factor

Source: Adamek, F. et al. (2012) - Energiespeicher für die Energiewende, VDE-Studie, VDE, June 2012, pp.45-127

full storage of RE

4,450 km of new grids are necessary to integrate the non-transmittable energy until 2020

- > New storage facilities will have almost no impact on the necessary grid expansion
- > Storage capacities will shift the generation characteristics of conventional power plants
- > Existing electricity market gives no incentive for new energy storages

Page 12

Germany's Energy Turnaround Agenda

- 1. Fluctuating generation
- 2. Storage and transmission needs
- **3.** Energy market discussion

1. Fluctuating generation | 2. Storage and transmission needs | 3. Energy market discussion

Does Germany's energy turnaround will lead to changes of the existing energy-only-market?

Current discussion in Germany:

Energy- only-market	 > Operators of power plants are paid by the amount of generated energy > Do the operators have enough incentives to provide a sufficient level of conventional capacities in future? 					
	Driver for a capacity market					
Future	> Almost no profit contribution of peak power plants (low full load hours)					
	 Tertiary control services are already a implicit capacity mechanism but prices significantly decreased for positive capacities (for negative capacities prices slightly decreased only) 					
	> Lower electricity wholesale market price due to high amount of RE without any commodity costs					
	> Possible secured capacity shortage					

Source: Gohsen, D. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign, RWE Innogy, 24.7.2012, pp.15-18 Achner, S. et al. (2011). - Kapazitätsmarkt – Rahmenbedingungen, Notwendigkeit und Eckpunkte einer Ausgestaltung, Bet, 02.09.2011 Elberg, C. et al. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign, ewi, April 2012

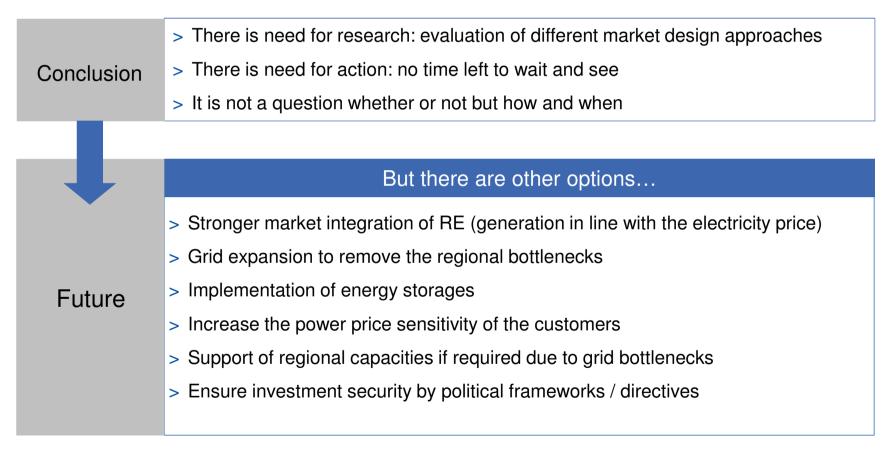
RWE Innogy 05.10.2012 Page 14

Capacity markets and their characteristics – a new market design for Germany's energy market?

Current discussion in Germany:

	Comprehensive CM	Selective CM	Strategic reserve CM
Advantages	 Good solution in order to reach a certain capacity as all power plants are participating 	 Lower financial risks No windfall profits when focusing on new-build only 	 > Usage during energy shortage only otherwise like energy-only-market > Financing through capacity payment only
Disadvantages	 > Windfall profits for existing plants > New-build plants will be price setters 	 Selection of nominated plants Inefficient due to inaccurate capacity forecast (how much capacity is available in year x?) 	 Inefficient dispatch of generation and demand (load shedding and high electricity price before using the strategic reserve) Dimensioning of strategic reserve capacity

Source: Gohsen, D. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign , RWE Innogy, 24.7.2012, pp.15-18


Achner, S. et al. (2011). - Kapazitätsmarkt – Rahmenbedingungen, Notwendigkeit und Eckpunkte einer Ausgestaltung, Bet, 02.09.2011 Elberg, C. et al. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign, ewi, April 2012

Ш

Does Germany's energy-only-market persist if other options will be implemented?

Current discussion in Germany:

Source: Gohsen, D. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign, RWE Innogy, 24.7.2012, pp.15-18 Achner, S. et al. (2011). - Kapazitätsmarkt – Rahmenbedingungen, Notwendigkeit und Eckpunkte einer Ausgestaltung, Bet, 02.09.2011 Elberg, C. et al. (2012). - Untersuchungen zu einem zukunftsfähigen Strommarktdesign, ewi, April 2012

How does the future look like? Compressed-air cooling towers Compressed-air energy storage Gas buffer Batteries

Source: Schuster, J. & Kunz, M. (2010). - Aus Wind werde Gas, Focus Magazin no.11 (2010)

