Integrated modelling of the future energy system – results and challenges

Magnus Korpås, Michael Belsnes, Ingeborg Graabak SINTEF Energi AS <u>magnus.korpas@sintef.no</u>

Contents

- The need for balancing wind power variations
- European power market model
- Benefits of integrated balancing markets
- Integrating different environmental requirements in hydro production planning

Challenges of wind power on the power system

- Wind power brings more variability and uncertainty
- Can impact reliability and efficiency of the power system
- Power system operation with wind power requirements:
 - Knowledge of wind power variability and predictability
 - Knowledge of wind turbine capabilities
 - Knowledge of future wind power installations for system planning

Reserve requirements for wind power

- The system will see the aggregate net imbalance
 - Unforeseen variations in load and wind
 - Net load = Load Wind Solar

Challenges:

- Flexibility of thermal power plants (ramp rates, start/ stop operation)
- Wind can push thermal plants out of the market security of supply has to be fulfilled

EMPS/Samkjøringsmodellen : A stochastic fundamental market model with hydro optimization

TEF

Features:

- Flexible demand modelling
 - Gradual adaptation to price
 - Optimizing adaptation
- Thermal unit start-up costs
- Reserves
- Wind power
- Parallel processing
- Advances in time resolution
 - Sequential blocks of hours per day
 - Daily inflow
 - Hourly wind power data
 - Daily pumped storage
 - Automatic calibration
 - Detailed grid with load flow model
 - EPF/Samlast

EMPS model: Optimization and simulation

Strategy hydro reservior calculation (SDP)

System/market simulation (LP)

The European Multi-area Power Market Simulator EMPS

Current EU model has 55 nodes/96 connections for 37 countries plus offshore nodes

Production units

- 10 thermal power plant types: Nuclear, oil, coal, gas etc
- CCS implemented in coal, gas and biomass
- RES plants deterministic: Biomass, geothermal
- RES plants stochastic: Hydro, wind, solar, wave
- 75 years of wind, solar and hydro resources simulated

Consumption

- Price dependent consumption per year from statistics, projected to a future year (2020-2050)
- 5-8 demand levels per week

Hydro power

Reservoir, Run-of-river, Pumped storage

Wind power

• Divided into onshore and offshore wind farms

Solar power

Aggregated capacity of PV and CSP

() SINTEF

Scenarios defined within the EU-SUSPLAN project

Teknologi for et bedre samfunn

Large scale exchange of balancing power between Norway and Europe – case study

- 4 cases for Norway based on the "Blue" SUSPLAN scenario (70% renewable share in 2050).
 - 1. "2030-1572": Year 2030. Pump capacity of 1572 MW.
 - 2. "2030-10000": Year 2030. Production capacity of 40 GW + pump capacity of 11.5 GW. North Sea grid capacity of 20 GW.
 - 3. "2050-1572": Year 2050 . Pump capacity of 1572 MW.
 - 4. "2050-10000":Year 2030. Production capacity of 40 GW + pump capacity of 11.5 GW. North Sea grid capacity of 20 GW.

Results for CEDREN, 2012 (Graabak, Skjelbreid)

Results for CEDREN, 2012 (Graabak, Skjelbreid)

() SINTEF

Teknologi for et bedre samfunn

Case study results

- All expected impacts on the European power system was observed:
 - Norwegian hydro power was used as pumped storage
 - CO₂-emissions in Europe were reduced
 - Higher prices in Norway lower prices in Germany
 - Better utilization of wind- and solar power at the continent
 - Lower amount of energy not supplied at the continent
- NOTICE: More detailed analyses is required for better quantification of impacts
 - Grid- and hydro characteristics for Norway
 - Grid-, thermal- and wind characterisitcs for other countries

Results for CEDREN, 2012 (Graabak, Skjelbreid)

Model of an integrated regulating power marked

- Integrated regulating power market based on a common day-ahead market
- Detailed system description of nordic + Germany and Netherlands
- Purpose: Estimation of socioeconomic benefit of integrating multinational regulating power markets

Results from PhD work by Stefan Janerth Supervisor: Gerard Doorman, NTNU

Reserve and imbalance results

	No integration	Full integration	5% reservation	10% reservation
Reserve procurement costs	167 M€	44 M€	40 M€	36 M€
Balance settlement costs	119 M€	62 M€	54 M€	48 M€

- Large benefit of integration
- Decreased balancing costs due to interconnection capacity
 <u>reservation</u>
 Results from PhD work by Stefan IS

Results from PhD work by Stefan Janerth Supervisor: Gerard Doorman, NTNU

Day-ahead results

	Full integration	5% reservation	10% reservation
Gross exchange	17.42 TWh	16.85 TWh	16.26 TWh
Socio-economic outcome	-	-79.46 M€	-260.25 M€

- Simultaneous clearing of day-ahead and reserve procurement
- Perfect markets, no strategic bidding

Results from PhD work by Stefan Janerth Supervisor: Gerard Doorman, NTNU

ProdRisk: Local Long and Medium Term Planning

- Exogenous stochastic market prices, endogenous market and combinations

ProdRisk

Stochastic optimal scheduling

- SDDP solution algorithm Optimization of detailed hydro system
- Supplement to EOPS/Vansimtap
- May include utility functions, futures trading
- Ideal for scheduling generation, maintenance
- Provides endpoint water values for short term scheduling
- Time consuming Parallel processing used
- Flexible time resloution
- Flexible use of penalties
- Investment analysis

Estimating costs of environmental restrictions using ProdRisk

Uke

Project for Sira-Kvina 2012 (Follestad, Fjeldstad)

16

Estimating costs of environmental restrictions using ProdRisk

Summary

- The need for balancing wind power variations
 - Net load = Load Wind Solar
- European power market model
 - Large potential benefits of building interconnectors
- Integrated balancing markets
 - Large potential benefits of full cross-border integration
- Integrating different environmental requirements in hydro production planning
 - Simulating the effect on hydro production revenue using ProdRisk

