Potential benefits and regulatory risks for new interconnections from Norway

Kick off seminar Hydro Balance Trondheim, 23. October 2013

Jan Bråten, Chief Economist, Statnett

Agenda

- Economics of Interconnectors
 - ✓ Norway Europe/UK

Benefits must exceed costs for all parties who can stop the project

- Or it will not be realised
- Regulation matters four examples
 - The case of ITC
 - Capacity pricing
 - Carbon pricing
- Regulatory risk: What can be done?

Stat<mark>nett</mark>

Decarbonisation => Reducing flexible generation and increasing intermittent renewable generation

- We need new flexibility in generation, consumption and storage
- We need transmission and interconnection in order to
 - Even out some of the variability of intermittent generation across Europe
 - Use existing flexibility efficiently
 - Develop new flexibility where it is cost efficient

Stat<mark>nett</mark>

Economics of Interconnectors Norway – Continental / UK

- Capital intensive. Life span of up to 60 years. 1,2
 M€/MW + national grid reinforcements
- Today: Available flexibility and "implicit pumping"
- Expansion beyond existing plans will soon require new generation capacity, and a bit later also increased pumping capacity
 - ✓ Pumping capacity: +/- 0,3 M€/MW
 - Higher short term cost of flexibility with pumping energy efficiency 75%?
 - Interaction with increased Norwegian benefits from (seasonal) pumping?

 May need coordinated expansion of interconnectors and hydro flexibility. New regulation?

Stat<mark>nett</mark>

Economics of Interconnectors Norway – Continental / UK

Benefits / revenues come from

- Price differences (day ahead, intra day, ancillary services)
 - Congestion rent
 - Consumer and producer surplus
- Security of supply, reduced price uncertainty, more efficient competition
 - Capacity payments...

Diminishing incremental revenue when capacity is expanded

Statnett

28. november 2013

Price difference a normal week

Statnett

28. november 2013

7

Market shocks and fuel price variations increase profit

Statnett

28. november 2013

Average price difference per week varies substantially (Norway – partner)

How much is profitable from a European perspective?

- The first new interconnectors seem to profitable
- History tells us...
- Technical potential > 20 GW
- More intermittent generation and higher CO2prices increase profitability
- But what about the PV and capacity payments cutting peak prices?

Benefits must exceed costs for <u>everyone</u> with the power to stop an interconnector

- Two countries must agree
 - And there are many stakeholders...
- Perceptions of future benefits may differ
- Uncertainty

Statnett

- Market development (e.g. fuel prices)
- Technology

Regulatory risk

Regulation example 1: Inter TSO Compensation (ITC)

- ITC generates payments between countries (TSOs) for the "use" of the grid in other countries
 - To cover variable cost and <u>incremental capacity cost</u>
 - Norway currently pays approx € 12 million per year
 - Suggested and postponed model: approx € 90 million per year
- E.g. Norway sells power to Denmark and have to pay for the use of the grid all the way to Italy...
- ⇒ For Norway: A tax on interconnections a strong disincentive if not kept under control Statnett

Example 2: Capacity payments

- Capacity payments increase capacity and reduce peak prices in the day ahead market
- Distort investments unless demand, storage and interconnectors are included
 - Worst case: supporting old coal plants instead of promoting new flexibility

Example 4: Too low carbon price

- Support for renewables and energy efficiency programs imply that we can reach a given emission level with a lower carbon price
 Carbon price lower than shadow price of emissions
- Low carbon price \rightarrow lower peak prices
 - Lower start and stop cost, lower MC in the higher end of the supply curve
- Reduces the profitability of an interconnection to Norway

Capacity payments and too low carbon price

Regulatory risk: What can be done?

Can we reduce the risk?

- Reach a more stable and better market design, political framework and regulation? A common need for most investors in the power sector
 - E.g.: 2030 targets and a (more) credible political framework in Europa. Climate low in UK
 - National/EU agreements that exclude some regulatory risk
- Contracts or business models that reduce counter part risks?
 - E.g. Handling of grid congestions or hydro producers responding according to true costs and capacity
- EU, ENTSO-E, States, TSOs and other players involved

Regulatory risk: What can be done?

Can we share the risk in a better way?

- Business models and long term contracts?
- For a country that *needs* flexibility, an interconnector reduces total risk
 - More *diversified* against system crises easier to let the market solve the balancing
 - An argument for putting more of the financial risk on the importers?
- Ownership?

Thank you