Economics of Sustainable Networks: Public Engagement and Investment

Tooraj Jamasb
Department of Economics and Finance
Durham University Business School
tooraj.jamasb@durham.ac.uk
About us

• Durham University
• Durham Energy Institute
• Energy Doctoral Training Centre
• Durham University Business School
 ➢ Wenche Tobiasson
 ➢ Rabindra Nepal
 ➢ Rahmat Poudineh
Public Engagement in Network Development

A New Institutional Economics View
Beauly-Denny Project, Scotland

Wenche Tobiasson
Christina Beestermöller
Helena Meier
Tooraj Jamasb
Economic features of grid development

• Large sunk costs
• Numerous different stakeholders
• Public goods
• Externalities
• Incomplete contracts
• Information asymmetries
Beauly-Denny project: Facts

- High Voltage Transmission line between Beauly, near Inverness, and Denny, near Stirling.
- Ten year planning process between 2002-2012.
- **220km long**, 600 steel pylons between 43 and 65m tall.
- Total Investment: Over £750m.
- Key infrastructural development to connect renewable energy generation in the North to the network.
- Over 20,000 objections from mainly Scotland but also other parts of the world.
- **Longest ever public inquiry in Scotland**.
Theoretical approach: New Institutional Economics

• Neoclassical Economics assumes costless transactions, rational actors and perfect information → Unrealistic

• New Institutional Economics central concepts
 – Transaction cost
 – Property-rights
 – Principal-Agent relationships
 – Market failure

• The concepts are connected through the costs of transacting
 – Uncertainty, opportunism, incomplete contracts, ill-defined property rights and miscommunicated principal-agent relationships increase these costs
Conceptual governance model

• Market based or non-market based
 ➢ Coase (1937), Williamson (1979)

• The optimal (cost minimizing) governance structure determined from the characteristics of a specific activity
Public engagement

<table>
<thead>
<tr>
<th>Current</th>
<th>Suggested future</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Characterised by one-way communication</td>
<td>- Two-way discussion</td>
</tr>
<tr>
<td>- Limited</td>
<td>- At a place upstream in decision-making process</td>
</tr>
<tr>
<td>- Unstructured</td>
<td>- Integrated non-market based</td>
</tr>
<tr>
<td>- Ineffective downstream in decision-making process</td>
<td>- Clear, uniform framework to limit opportunism, uncertainty, information asymmetry, and thus transaction costs</td>
</tr>
<tr>
<td>- Non-integrated market based</td>
<td>- Increased transparency</td>
</tr>
</tbody>
</table>
Using Supervised Environmental Composites in Production and Efficiency Analyses: An Application to Norwegian Electricity Networks

Christian Growitsch
Institute of Energy Economics,
University of Cologne

Tooraj Jamasb
Department of Economics and Finance,
Durham University Business School

Luis Orea
Efficiency Group, Department of Economics,
University of Oviedo

EWI Working Paper
No 12/18, December 2012
Institute of Energy Economics
University of Cologne
Introduction

- New technologies allow researchers to collect and analyze large amounts of data at relatively low cost.
 - Computational biology, climatology, geology, neurology, health science, economics, and finance.
- Reducing the dimensions of data is a natural and sometimes necessary manner in order to proceed with massive data analyses.
- The action of replacing a set of regressors with a lower-dimensional function is called dimension reduction.
- The reduction is labeled as sufficient or supervised when this reduction is achieved without loss of information (Fisher, 1922).
- Li (1991) introduced the first method for sufficient dimension reduction, i.e. sliced inverse regression (SIR).
 - not used in production economics and efficiency analysis.
• We apply these techniques to a dataset of Norwegian electricity distribution networks, which are regulated using incentive regulation schemes based on efficiency analyses.

• **Weather and geographic conditions** are the most commonly factors perceived to be affecting the performance of electricity networks.

• To reduce the dimensions of the environmental variables we use two supervised methods:
 – SIR = sliced inverse regression
 – PIR = parametric inverse regression.

• We use the most commonly unsupervised method (e.g. PCA) as a benchmark.

• We also examine whether efficiency analyses are robust with respect to using one or other type of methods.
Partial goodness-of-fit

Partial R^2

Partial BIC

Number of composites

Number of composites
Investment and Efficiency under Incentive Regulation: Analysis of Norwegian DNOs

Rahmat Poudineh
Tooraj Jamasb
• We use a dataset comprising a balanced panel of 129 distribution companies from 2004 to 2010
• The inputs are capital expenditure (In) and other costs (C_1)

\[C_1 = \text{Opex} + \text{Cost of Losses} + \text{Cost of Energy Not Supplied} \]

• The “total number of customers”, “number of substations” and “length of network” are used as outputs
• The parameters used in the model are obtained by maximum likelihood estimation procedure
• All variables are divided by their sample median prior to estimation
Results - Efficiency variation

- Investment has impacted efficiency and in a relatively wide range.

- On average, investments led to 4.8% efficiency gain.
Results - Efficiency gain and loss

- Efficiency loss is prevalent among the companies with lower investment to total cost ratios

- Middle size share of investment created more efficiency gain

- Again high share of investments created less efficiency gain

\[y = 0.5684x - 0.0879 \]

\[R^2 = 0.0961 \]
Dynamic Efficiency and Incentive Regulation:
Analysis of Norwegian DNOs

Rahmat Poudineh
Tooraj Jamasb
Dynamic efficiency

• The measure of efficiency obtained in benchmarking is only appropriate for the short run
• Because, it captures the firm’s performance in a snapshot towards its long run equilibrium
• The factors affecting short run behaviour of firm may not adjust instantaneously when the firm invests (e.g., in new technologies or R&D)
• Under this condition, investment may create a virtual inefficiency which persists over time
Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Simple random effect</th>
<th>Correlated random effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>β_0</td>
<td>0.34205</td>
<td>(0.053887)</td>
</tr>
<tr>
<td>β_1</td>
<td>0.28762</td>
<td>(0.046698)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.36065</td>
<td>(0.029827)</td>
</tr>
<tr>
<td>β_3</td>
<td>0.24970</td>
<td>(0.036858)</td>
</tr>
<tr>
<td>β_4</td>
<td>0.09727</td>
<td>(0.038841)</td>
</tr>
<tr>
<td>β_5</td>
<td>-0.06312</td>
<td>(0.100805)</td>
</tr>
<tr>
<td>β_6</td>
<td>-0.06084</td>
<td>(0.053950)</td>
</tr>
<tr>
<td>β_7</td>
<td>-0.02394</td>
<td>(0.072697)</td>
</tr>
<tr>
<td>β_8</td>
<td>-0.00349</td>
<td>(0.030478)</td>
</tr>
<tr>
<td>ξ_1</td>
<td>0.04121</td>
<td>(0.052897)</td>
</tr>
<tr>
<td>ξ_2</td>
<td>0.00007</td>
<td>(0.000210)</td>
</tr>
<tr>
<td>σ_v</td>
<td>0.03418</td>
<td>(0.003877)</td>
</tr>
<tr>
<td>δ</td>
<td>0.26944</td>
<td>(0.057608)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.76600</td>
<td>(0.038328)</td>
</tr>
<tr>
<td>σ_ν</td>
<td>0.24952</td>
<td>(0.027429)</td>
</tr>
<tr>
<td>σ_ω</td>
<td>0.12275</td>
<td>(0.010901)</td>
</tr>
</tbody>
</table>

Long run TE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Long run TE</td>
<td>0.75832</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>1071.00</td>
</tr>
<tr>
<td>Posterior probability</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Conclusions

• 76% of ratio of inefficiency is transmitted to the subsequent periods
• This arises because of technological difference among firms or cyclical investments
• This effect of sluggish adjustment of output is problematic for companies' revenue under ex-post regulatory treatment of investment
• Thus, inclusion of capital cost in benchmarking model might result in unintended outcome for investment and innovation behaviour of distribution companies
Determinates of Investments:
Analysis of Norwegian DNOs

Rahmat Poudineh
Tooraj Jamasp
Methodology

• Due to the uncertainty around the response of the firm to different incentive instruments we adopt a Bayesian Model Averaging (BMA) technique

• BMA is a powerful tool to examine the extent to which any given factor improves the explanatory power of the estimated models when it is included

• It takes into account the uncertainties around model selection and estimation
<table>
<thead>
<tr>
<th>Group</th>
<th>Variable</th>
<th>Name</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent</td>
<td>Investment*</td>
<td>IN</td>
<td>74</td>
<td>337124</td>
<td>22003</td>
</tr>
<tr>
<td>Group 1: Demand factors</td>
<td>Energy density (MWh/KM)</td>
<td>DENS</td>
<td>137</td>
<td>2234</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>Number of stations (#)</td>
<td>NS</td>
<td>29</td>
<td>14405</td>
<td>993</td>
</tr>
<tr>
<td></td>
<td>Number of customers(#)</td>
<td>NC</td>
<td>243</td>
<td>535443</td>
<td>19869</td>
</tr>
<tr>
<td></td>
<td>Number of leisure home (#)</td>
<td>RE</td>
<td>68</td>
<td>27307</td>
<td>2279</td>
</tr>
<tr>
<td></td>
<td>Distributed generation (MW)</td>
<td>DG</td>
<td>0</td>
<td>96</td>
<td>10</td>
</tr>
<tr>
<td>Group 2: Quality factors</td>
<td>Cost of energy not supplied*</td>
<td>CENS</td>
<td>12</td>
<td>58527</td>
<td>2928</td>
</tr>
<tr>
<td></td>
<td>Cost of network energy loss*</td>
<td>CNEL</td>
<td>278</td>
<td>394127</td>
<td>14949</td>
</tr>
<tr>
<td>Group 3: Environmental factors</td>
<td>Share of overhead lines (%)</td>
<td>OH</td>
<td>0.13</td>
<td>0.97</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Snow condition (millimetres)</td>
<td>snow</td>
<td>53</td>
<td>1194</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Wind and distance to coast (ratio)</td>
<td>wind</td>
<td>0</td>
<td>0.16</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Forest productivity (fraction)</td>
<td>forest</td>
<td>0</td>
<td>0.55</td>
<td>0.16</td>
</tr>
<tr>
<td>Group 4: Other factors</td>
<td>Depreciation*</td>
<td>DEP</td>
<td>631</td>
<td>281978</td>
<td>16606</td>
</tr>
<tr>
<td></td>
<td>Operational expenditure*</td>
<td>OPEX</td>
<td>878</td>
<td>854646</td>
<td>45136</td>
</tr>
</tbody>
</table>
Posterior inclusion probability
Conclusions

• Depreciations, number of leisure homes, number of transformers, energy density, and cost of energy not supplied are main drivers of investments

• No evidence of environmental factors driving investments
• No investment effect from distributed generation sources

• Cost of network energy loss also had no impact on investments
• Possibly, because of different treatment of cost of network energy loss and quality of service