Energy Storage 2014 Luxembourg, 14-15 May 2014

Julian Sauterleute, SINTEF Energy Research, Norway

Flexible generation and energy storage by Norwegian hydropower to balance variable renewable energy

Julian Sauterleute¹, Atle Harby¹, Ånund Killingtveit², Eivind Solvang¹, Julie Charmasson¹

- ¹ SINTEF Energy Research
- ² Norwegian University of Science and Technology

Future energy system

Wind power

2012: 105 GW

2030: > 300 GW?

(Source: EWEA)

Integration of VRES

- Transmission and distribution grid expansion
- Demand side management
- Improved forecasting of resource availability
- Energy storage

Energy balancing and storage by hydropower

Upper reservoir

Hydropower's capability

- Closing the gap between generation and load
 - minutes to weeks
- Frequent and rapid start and stop
- Primary, secondary control and minutes reserve
- Frequency stabilization
- Voltage regulation
- Black start capability

Hydropower in Norway

- Number of reservoirs
- Storage capacity

> 100 pairs of large reservoirs

20 reservoirs > 100 Mm³ both up- and downstream about 85 TWh storage

CEDREN

Hydropower in Norway

Hydropower and wind power are complementary

Monthly average wind power generation and inflow to hydropower

Simulated wind power production in the North Sea area in 2030 95 000 MW installed capacity

Wind power North Sea area – July-September 2001

Wind Power North Sea area – January-March 2001

Potential in Norway

Increasing balance power capacity in

Norwegian hydroelectric power stations —

A preliminary study of specific cases in

Southern Norway

Solvang, E. et al. (2011)

- New power stations
- Hydro storage + pumped storage
- Existing reservoirs and dams
- Outlet into reservoir or fjord/sea
- 20.000 MW possible by 2030

Potential in Norway

Norwegian hydropower for large-scale electricity balancing needs

Solvang, E. et al. (2014)

- Implications for reservoir operation
- Water level fluctuations in reservoirs, three specific pumped storage cases
- Season, frequency, rate of change
- Analysis of public acceptance based on stakeholder interviews

Why using hydropower?

- Flexibility: Storage across entire time scale
- Most economic means of energy storage on large scale
- High efficiency (about 80 %)
- Various types of flexibility and balancing services
- Established technology

Challenges

HydroBalance Project

- Scenarios for different futures of the Norwegian hydro system until 2050
- Analyses, simulations and case studies of
 - energy system
 - energy market
 - environmental impacts
 - regulatory framework and public acceptance

Environmental impacts

Water level fluctuations

Water temperature

Societal and economic aspects

- Policy, regulatory framework
- Public acceptance
- Local value creation
- Job opportunities

Conclusions

- Uncertain future many scenarios
- Rapid changes may come (...Fukushima...)
- Hydro reservoirs = excellent energy storage
- We probably need governmental agreements and new markets

Centre for Environmental Design of Renewable Energy (CEDREN)

www.cedren.no

Renewable energy respecting nature

