Norwegian pumped hydro for providing peak load power in Northern Europe
Cost comparison against OCGT

RERC, Oslo, 17. June 2014

Magnus Korpås, NTNU
Sverre Aam, SINTEF Energi
Ove Wolfgang, SINTEF Energi
Balancing of renewables in Europe

Norwegian hydro
- Fast response
- Large storages
- Big investments
- European collaboration

Local pumped storage

Efficient power markets

Balancing load, wind & solar

More flexible
- Coal plants
- Nuclear plants

Strengthen the power grid across borders

Flexible gas power
- OCGT
- CCGT

- Smarter use of energy
- Interplay with district heating
- Local storage

NTNU Norwegian University of Science and Technology

SINTEF
Study of power production cost in Europe

• Only cost is considered
 – Market simulation not included
 – Assessment of the most cost-effective solutions in the near term

• In-house study
 – Time period 2025-2050
 – Based on IEA ETP scenarios and figures
 – Gas, Coal and Nuclear cost model according to report for UK Dept. of Energy and Climate Change
 – Pumped hydro storage and grid data based on Norwegian figures; NVE and Statnett
Three scenarios
2025 – 2050 perspective

1. 2DS – IEA 450 Scenario:
 – Gas price 29.5 €/MWh
 – CO₂ price 93.9 €/ton

2. 4DS – IEA New Policy Scenario:
 – Gas price 34.8 €/MWh
 – CO₂ price 35.2 €/ton

3. Low Gas price Europe:
 – Gas price 19.7 €/MWh (USA level)
 – CO₂ price 35.2 €/ton (as 4DS)
Norwegian hydropower for balancing

• The reservoirs are natural lakes
 • Multi-year reservoirs
 • Largest lake stores 8 TWh
 • Total 84 TWh reservoir capacity

• Balancing capacity estimates 2030
 • 29 GW installed at present
 • + 10 GW with larger tunnels and generators
 • + 20 GW pumped storage
 • 30 GW total new capacity
 • Within today's environmental limits
 • Requires more transmission capacity
Norwegian University of Science and Technology

Peak load and base load have different cost

€/MWh

Peak load

Gas
Pumped hydro low
Pumped hydro med
Pumped hydro high

Base load
Gas
Coal
Coal w/CCS
Nuclear

Gas
Coal
Coal w/CCS
Nuclear
Pumped hydro power is cost-effective for balancing in all scenarios

Updated estimates with lower load factor and higher grid costs
Balancing Reserve Capacity vs Energy

Reserve procurement

- Reserve capacity (RC) [EUR/MW]
- TSOs ensure sufficient reserves in the system during operation

System balancing

- Balancing energy (BE) [EUR/MWh]
- TSOs activate reserves to counteract system imbalances

Source: Doorman (NTNU)
Study model 1 – Integration of balancing markets

Fundamental model
- Detailed water course description
- About 300 thermal power plants
- Transmission corridors (NTC)

Northern Europe
- Denmark, Finland, Norway, Sweden
- Germany, Netherlands, Belgium

System scenarios
- 2010 – current state of the system
- 2020 – a future state of the system

Several climatic years
- Hydrology (Inflow)
- Temperature
- Wind speed

Source: Doorman (NTNU)
Country wise annual balancing reserve allocation (GWh/yr)

(a) 2010

(b) 2020

Source: Jaehnert (NTNU)
Total balancing market costs for different wind forecast horizons

(a) 2010

No integration: Reserve procurement
No integration: System balancing
Full integration: Reserve procurement
Full integration: System balancing

(b) 2020

Source: Jaehnert (NTNU)
Study model 2 – Integration of balancing markets

- Detailed European grid model based on DC power flow
- Representation of day-ahead, intra-day and balancing markets
- Co-optimizating day-ahead schedules and reserve procurements based on forecasts
- Scenarios for load, generation and grid capacity year 2020 and 2030

Source: Farahmand (NTNU/SINTEF)
Large benefits of integrating the Northern and continental balancing markets

Total annual balancing cost savings (Mill. EURO)

<table>
<thead>
<tr>
<th></th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserve procurement costs</td>
<td>1500</td>
</tr>
<tr>
<td>Balance settlement costs</td>
<td>1700</td>
</tr>
</tbody>
</table>

Source: Farahmand (NTNU/SINTEF)
Significant additional savings are achieved with intra-day markets

Total annual balancing cost savings

- 2010: Without Intraday = 250, With Intraday = 175
- 2020: Without Intraday = 500, With Intraday = 100

Activated reserves

Source: Aigner (NTNU)
Summary

• Norwegian pumped hydro is cost-effective for balancing
 – Large potential
 – Large flexibility and multiple uses
 – Requires European collaboration
• An efficient and integrated power market is an enabler for high RE penetration
 – Reduces the need for expensive storage
 – Reduces the need for expensive reserves
• Comprehensive studies of balancing markets in Northern Europe
 – Large benefits of integrated markets for balancing resources
 – Large benefits of integrated markets for intra-day trading