

Norwegian pumped hydro for providing peak load power in Northern Europe

Cost comparison against OCGT

RERC, Oslo, 17. June 2014

Magnus Korpås, NTNU Sverre Aam, SINTEF Energi Ove Wolfgang, SINTEF Energi

Balancing of renewables in Europe

Study of power production cost in Europe

- Only cost is considered
 - Market simulation not included
 - Assessment of the most cost-effective solutions in the near term
- In-house study
 - Time period 2025-2050
 - Based on IEA ETP scenarios and figures
 - Gas, Coal and Nuclear cost model according to report for UK Dept. of Energy and Climate Change
 - Pumped hydro storage and grid data based on Norwegian figures; NVE and Statnett

NTEF

3

Three scenarios 2025 – 2050 perspective

- 1. 2DS IEA 450 Scenario:
 - Gas price 29.5 € /MWh
 - CO₂ price 93.9 €/ton
- 2. 4DS IEA New Policy Scenario:
 - Gas price 34.8 €/MWh
 - CO_2 price 35.2 €/ton
- 3. Low Gas price Europe:

NTNU

- Gas price 19.7 €/MWh (USA level)
- CO₂ price 35.2 €/ton (as 4DS)

Norwegian hydropower for balancing

- The reservoirs are natural lakes
 - Multi-year reservoirs
 - Largest lake stores 8 TWh
 - Total 84 TWh reservior capacity
- Balancing capacity estimates 2030
 - 29 GW installed at present
 - + 10 GW with larger tunnels and generators
 - + 20 GW pumped storage
 - 30 GW total new capacity
 - Within todays environmental limits
 - Requires more transmission capacity

Peak load and base load have different cost

Pumped hydro power is cost-effective for balancing in all scenarios

NTNU Norwegian University of Science and Technology (SINTEF)

Balancing Reserve Capacity vs Energy

Study model 1 – Integration of balancing markets

Fundamental model	Detailed water course description About 300 thermal power plants Transmission corridors (NTC)		
Northern Europe	Denmark, Finland, Norway, Sweden Germany, Netherlands, Belgium		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
System scenarios	2010 – current state of the system 2020 – a future state of the system		
Several climatic years	Hydrology (Inflow) Temperature Wind speed		

Country wise annual balancing reserve allocation (GWh/yr)

SINTEF

NTNU

Norwegian University of Science and Technology 🔘

Source: Jaehnert (NTNU) 10

Total balancing market costs for different wind forecast horizons

 $1 \mathrm{NU}$ Norwegian University of Science and Technology (SINTEF)

Source: Jaehnert (NTNU) 11

Study model 2 – Integration of balancing markets

- Detailed European grid model based on DC power flow
- Representation of day-ahead, intraday and balancing markets
- Co-optimizating day-ahead scheduels and reserve procurements based on forecasts
- Scenarios for load, generation and grid capacity year 2020 and 2030

Source: Farahmand (NTNU/SINTEF)

ITFF

 TNU Norwegian University of Science and Technology (

Large benefits of integrating the Northern and continental balancing markets

Total annual balancing cost savings (Mill.EURO)

SINTEF Source: Farahmand (NTNU/SINTEF)

Significant additional savings are achieved with intra-day markets

Total annual balancing cost savings

Activated reserves

Summary

- Norwegian pumped hydro is cost-effective for balancing
 - Large potential
 - Large flexibility and multiple uses
 - Requires European collaboration
- An efficient and integrated power market is an enabler for high RE penetration
 - Reduces the need for expensive storage
 - Reduces the need for expensive reserves
- Comprehensive studies of balancing markets in Northern Europe
 - Large benefits of integrated markets for balancing resources
 - Large benefits of integrated markets for intra-day trading