

Balancing options and costs for offshore wind in the North Sea

Deepwind 2015, Trondheim

Magnus Korpås Professor Dept. of Electric Power Engineering

Simulated 2030 North Sea wind power during the storm front of «Carmen»...

NTNU Norwegian University of Science and Technology

Source: Aigner (NTNU)

...but it is the Net Load that matters

- The system will see the aggregated net imbalance
 - Unforeseen variations in load, wind and solar
 - Net load = Load Wind Solar

- Flexibility of thermal power plants (ramp rates, start/ stop operation)
- With very high RE share, thermal plants can be pushed out of the market security of supply has to be fulfilled

North Sea offshore wind lead to a large increase in Net Load variations

NTNU Norwegian University of Science and Technology

Source: Aigner (NTNU)

Wind pushes fossils out of the spot market...

NTNU Norwegian University of Science and Technology

...and into the capacity market

What about energy storage?

GW installed capacity

The future says...

CEDREN Case study 2030

10-20 GW new pumping and generation capacity using existing reservoirs

 $lacksquare{}$ NTNU Norwegian University of Science and Technology

Norwegian pumped hydro has low electricity costs compared with other flexible plant types

O NTNU Norwegian University of Science and Technology

Pumped hydro also the requries lowest capacity auction price for peaking needs

NTNU Norwegian University of Science and Technology

Large benefits of integrating the Northern and continental balancing markets

Total annual balancing cost savings (Mill.EURO)

 $\Gamma \mathrm{NU}$ Norwegian University of Science and Technology 🌘

SINTEF Source: Farahmand (NTNU/SINTEF)

Balancing options for OFFSHORE WIND & Co

NTNU Norwegian University of Science and Technology

Summary

- Norwegian pumped hydro is cost-effective for balancing
 - Large potential
 - Large flexibility and multiple uses
 - Requires European collaboration
- An efficient and integrated power market is an enabler for high RE penetration
 - Reduces the need for expensive storage
 - Reduces the need for expensive reserves
- Comprehensive studies of balancing markets in Northern Europe
 - Large benefits of integrated markets for balancing resources
 - Large benefits of integrated markets for intra-day trading