

Impacts of new operational regimes on fish populations in reservoirs

Antti Eloranta Post-doctoral researcher

Outline

- 1) Introduction to WP4
- 2) Potential ecological impacts of water level fluctuations
- 3) How to study ecological impacts?
 - Modelling environmental gradients
 - Food web analyses
- Initial results & future plans

WP4: Environmental impacts of new operational regimes

- **Task 4.1**: Modelling present ecological variation along environmental gradients
- Idea: Disentagle present effects of natural variation and hydropower on fish and lake food webs
- Combine ecological models (Task 4.1) and hydro-dynamic models (Task 4.2) to predict future ecological effects (Task 4.3)

Why focus on reservoirs?

- >900 reservoirs in Norway
 - Provide important ecological services
- Most studies done in rivers

reservoir

Why studying environmental gradients?

Potential impacts of rapid water level fluctuations

- Physical and chemical changes
 - Lake shoreline, water quality, temperature, ice-cover period
- Biological changes
 - Lake productivity
 - Species composition
 - Fish diet, growth and production

Water level changes in reservoirs

The ecological impacts depend on how
biologically productive areas are influenced

Littoral zone Pelagic zone

What means biological production?

www.nina.no

How to study ecological impacts? Modelling environmental gradients

How to study ecological impacts? Detailed food web studies

Habitat use

Food webs

How to study ecological impacts? Detailed food web studies

- Field studies in lakes and reservoirs:
 - 1) Unregulated
 - 2) Slightly regulated (Max_{wlf}<20m)
 - 3) Heavily regulated (Max_{wlf}>20m)
- Why reservoirs in North?
 - Simple fish communities
 - = more reliable results
 - Previously collected data

Studying food webs Stable isotope analysis

Trophic fractionation: δ^{13} C: 0-1 ‰ δ^{15} N: 3-4 ‰

What do we expect to find out?

Modelling trout catches

- How abiotic and biotic characteristics and water level fluctuation affect fish production in reservoirs and lakes?
- Hypothesis: The magnitude and timing of water level fluctuations affect fish production in reservoirs

Food web studies

- How water level fluctuations affect littoral and pelagic food webs in reservoirs?
- Hypothesis: Fish feed more on pelagic food and grow slower in heavily regulated lakes

Initial results: Modelling trout catches

- Modelling trout production in >470 lakes and reservoirs
 - Trout catches/biomass (CPUE*)
 - Regulation (unregul. vs. regul.)
 - Lake area and shape
 - Fish community composition
 - Catchment productivity (NDVI*)
 - Ice cover period

* CPUE = Catch Per Unit Of Effort (g fish / 100 m² net / night)
* NDVI = Normalized Difference Vegetation Index

Initial results: Modelling trout catches

- Trout catches slightly smaller in regulated
 lakes
- Variation large both in unregulated and regulated lakes

Why?

^{*} log g/100 m²/night

Initial results: Modelling trout catches

Lake area and presence of other fish species have stronger impact on trout catches than hydropower

Trout only

Trout + other fishes

Initial results: Fish diets in reservoirs

- Benthic (and terrestrial) invertebrates more important food than pelagic zooplankton
- Trout and charr have often different diets when living in the same lake
- No clear pattern from littoral to pelagic diet with increasing regulation level

Only initial analyses and results!

- Future modelling will include
 - More lakes and reservoirs
 - Actual regulation patterns
 - Fish stockings
- Food web studies
 - Stable isotope analyses running in Canada
 - Results will tell about energy flow patterns in reservoirs

