

What's up the dam?

Ecological impacts of water level fluctuations in reservoirs

Antti Eloranta

Post-doctoral researcher NINA Trondheim

HydroBalance

Why focus on reservoirs?

- >900 reservoirs in Norway
 - "Green batteries" for Europe?
 - Provide important ecological services
- Most studies done in rivers

HydroBalance WP4: Environmental impacts of new operational regimes

- Task 4.1: Modelling present ecological variation along environmental gradients
- Main idea: Disentagle present effects of natural variation and hydropower on fish and food webs
- Combine ecological models (Task 4.1) and hydro-dynamic models (Task 4.2) to predict future ecological effects (Task 4.3)

Potential impacts of rapid water level fluctuations

- Physical and chemical changes
 - Lake shoreline, water quality, temperature, ice-cover period

Source: http://www.ft.com/m/html/expandable-picture.htm

Potential impacts of rapid water level fluctuations

- Physical and chemical changes
 - Lake shoreline, water quality, temperature, ice-cover period
- Biological changes
 - Lake productivity
 - Species composition
 - Fish diet, growth and production

How to study ecological impacts?

Modelling environmental gradients

How to study ecological impacts?

Detailed food-web studies

Habitat use

Modelling = large-scale environmental gradients

Food webs = information about individual fish and ecosystem

Food webs

Drawings from Eloranta's PhD thesis (2013)

Initial results

Trout yield along environmental gradients

- Modelling catches from standardized test fishings in 335 lakes
- Trout yield decreases with increasing fish diversity
- Fish diversity shapes the response of trout yield to environmental variation

Submitted to Journal of Animal Ecology

Initial results

Impacts on lake food webs

 Lake size and fish diversity shape food webs in natural lakes

 Does water level fluctuations influence energy flow & food chain length in reservoirs?

Yes, but only slightly

 Lake characteristics and fish species, habitat, size etc. needs to be included ir putative food sources and the trophic niches
modelling

Future plans & studies

- More lakes and reservoirs
 - Both for modelling & foodweb studies
- Fish yield against actual regulation patterns
- Impacts on fish growth and parasites

Studying food webs

Stable isotope analysis

Trophic fractionation:

δ¹³C: 0-1 ‰

Initial results:

Fish diets in reservoirs

- Benthic (and terrestrial)
 invertebrates more important food
 than pelagic zooplankton
- Trout and charr have often different diets when living in the same lake
- No clear pattern from littoral to pelagic diet with increasing regulation level

