FutureHydro Workshop

Julian Sauterleute, SINTEF Energy Research

Beijing, 04/09/2013

Impacts of flexible hydropower

Julian Sauterleute¹, Atle Harby¹, Ånund Killingtveit², Eivind Solvang¹, Julie Charmasson¹ ¹SINTEF Energy Research

² Norwegian University of Science and Technology

Hydropeaking = ?

= Rapid changes in power production by hydro-electric facilities as a consequence of varying electricity generation and demand on the electricity market.

Photo: J. Sauterleute

Impact on ecosystems of water bodies downstream of the power plant outlets.

- Outlet into river \rightarrow Rapid fluctuations of stream flow and water level
- Outlet into a reservoir \rightarrow Rapid fluctuations of reservoir water level

Rapid flow fluctuations in rivers

May appear as follows:

Centre for Environmental Design of Renewable Energy

Analysis river Nidelv

- Event identification by river/data-specific threshold
- Parameter calculation
- 15-minutes interval
- Years 1994-1996

Selected parameters

Parameter						
Magnitude						
Flow						
Stage						
Flow maximum/minimum of a rapid increase						
Flow maximum/minimum of a rapid decrease						
Stage maximum/minimum of a rapid increase						
Stage maximum/minimum of a rapid decrease						
Flow ratio of a rapid increase/decrease						

 $\rightarrow Q_{max}/Q_{min}$

Selected parameters

Parameter							
Scale of time							
Mean rate of flow increase/decrease		140 T	Maximum of		Maximum		
Mean rate of stage increase/decrease		120 -	an increase		a decrease	e	
Maximal rate of flow increase/decrease	_		×			N	
Maximal rate of stage increase/decrease	s*h)]	100 -	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/m	
Time of the start/end of a rapid increase	n3/(80 -			Minimum of		
Time of the start/end of a rapid decrease	te[r	ł	1		a decrease	~~ 1	
Duration between a rapid increase and	w ra	60 -	Minii	mum of	/ /		
decrease	l flo	40 -	an in	crease	¥	×	
Duration between a rapid decrease and	anc			lavimal rate o	λ.		\square
increase	3/s]	20 -	A f	ow increase	ή Λ		
Frequency	<u> </u>		* / ¥ \ *	• X			
Count of rapid increases/decreases per year	arge	0 *		$\frac{1}{2}$	200		2
Portion of days with certain number of rapid	isch	-20 -	and	ian .) jan	jan ,	'iain
increases/decreases per day	Δ		0.00	12:00	00:00	(2:00	/
Portion of rapid increases/decreases during		-40 -			Maxir	nal rate of	E
daylight/twilight/darkness		-60			∠ flow o	lecrease	

Flow ratio (Q_{max}/Q_{min})

Rapid increases

Median	Р90	Max		
1.5	2.1	3.7		

Rapid decreases

Median	Р90	Max		
1.5	2.1	3.7		

- Magnitude in general low
- 2 to > 50 in Swiss and Austrian rivers (VAW & LCH, 2006)
- Extreme values up to 510 in USA/Canada/Finland/France (Bain, 2007)

Percentage of days with rapid fluctuations: on average 29 %

Rates of stage increase/decrease

Rapid increases

Rapid decreases

M	ean rate cm/h		Maximal rate cm/h		Mean rate cm/h			Maximal rate cm/h			
Median	P90	Max	Median	P90	Max	Median	P90	Max	Median	P90	Max
19.9	26.2	43.5	22.3	29.2	51.2	19.4	26.6	45.1	21.1	29.9	54.0

- Relatively low rates of change; Up to 240 cm/h in Swiss rivers (Baumann & Klaus, 2003)
- Critical: 10 cm/h to 18 cm/h (Halleraker et al., 2003; Saltveit et al., 2001)

Centre for Environmental Design of Renewable Energy

Distribution on time of day

Light conditions

- Temperature variations
- Fish growth
- Invertebrates

Sediment transport, erosion

Ice conditions

Modelling water level fluctuations in reservoirs

- Reservoir pairs in Southern Norway
- Balancing power capacity in addition to installed capacity
- Operation of existing power station remains unchanged
- Balancing power operation within current reservoir regulations
- Input data
 - Simulated wind power time series from North Sea
 - Observed reservoir water level and volume
 - → Current operational regime
 - → Natural inflow
- Time step: 1 day

Background

Increasing balance power capacity in Norwegian hydroelectric power stations – A preliminary study of specific cases in Southern Norway

Solvang et al., 2011, SINTEF TR A7195

- 20.000 MW possible by 2030
- Hydro storage + pumped storage
- Existing dams and reservoirs
- Outlet into reservoir or fjord/sea

Example case

Holen (Urarvatn–Bossvatn)

HolenVolume upper reservoir253 mill. m³Volume lower reservoir296 mill. m³Installed capacity1400 MW

Balancing power needs

Water level fluctuations

- Strong increase in rates of change in water level
- Shorter periods with high WL Longer periods with low WL

- Strong increase in rates of change in water level
- Longer periods with higher WL

Number of changes in stage

Holen

Necessity for seasonal regulations?

Ice

Conclusions

- Identification and quantification of water level fluctuations
- Basis for assessment of environmental impacts

Simulated stage Urarvatn 2002

(Re-)licencing of hydropower stations

