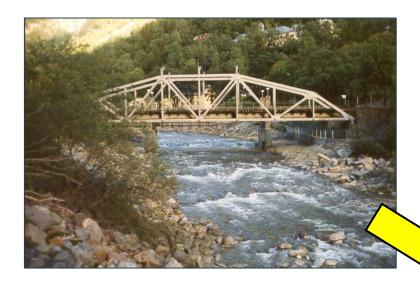
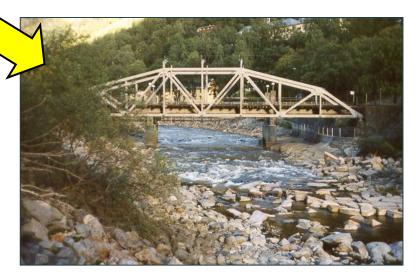
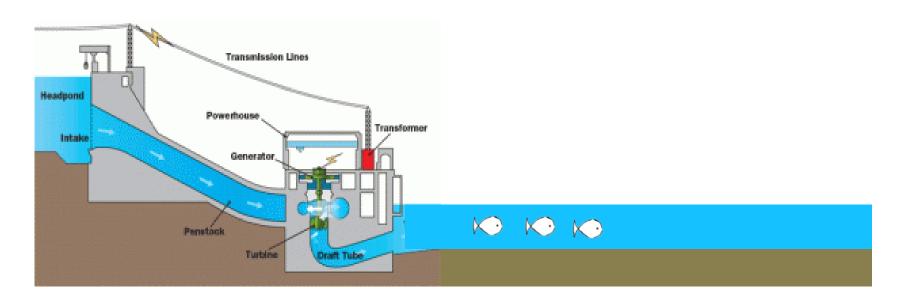

Virkninger av fleksibel kraftverksdrift og effektkjøring





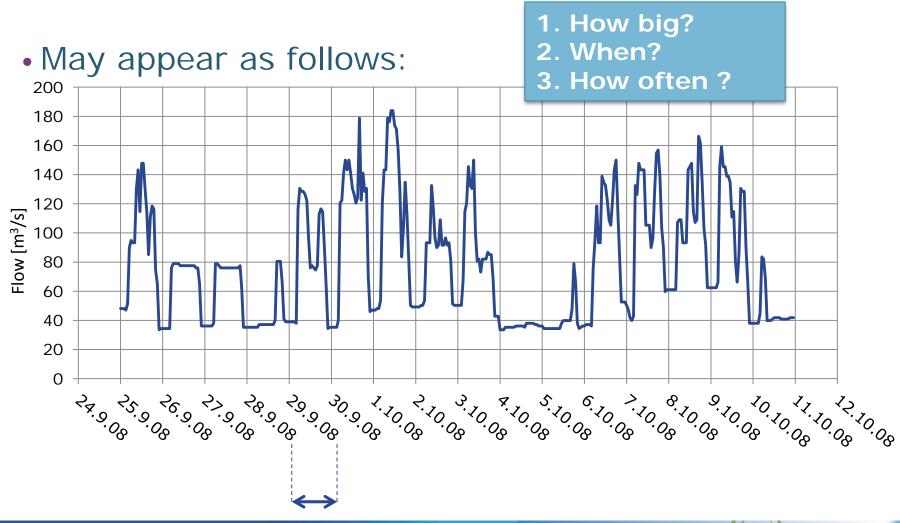
1. Hydropeaking ???

Rapid changes in power **production** by hydro-electric facilities as a consequence of varying electricity generation and **demand** on the electricity market.

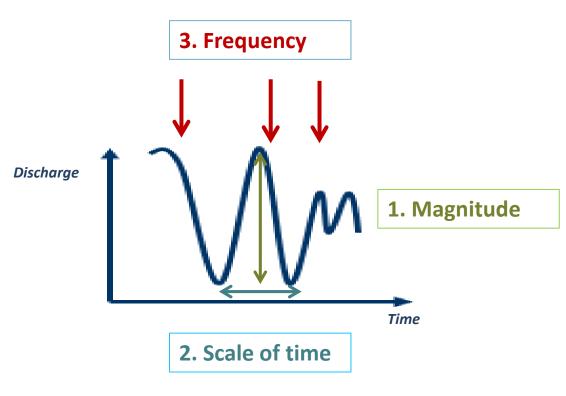


1. Hydropeaking ???

Impact on **ecosystems** of water bodies downstream of the power plant outlet.


Power plant

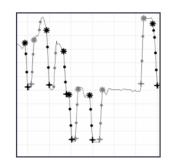
Downstream river


1. Hydropeaking ???

2. COSH-Tool

Characterisation of Stream Hydropeaking - Tool

Automated analysis of time series of flow and stage


Parameter	Symbol	Unit				
Magnitude						
Flow	Q	m³/s				
Stage	Н	cm				
Flow maximum/minimum of a	0 0	m³/s				
rapid increase	Q _{max,inc} , Q _{min,inc}					
Flow maximum/minimum of a		m³/s				
rapid decrease	$Q_{max,dec}$, $Q_{min,dec}$					
Stage maximum/minimum of a	H _{min,inc} , H _{max,inc}	m				
rapid increase	''min,inc ' ''max,inc					
Stage maximum/minimum of a	H _{max,dec} , H _{min,dec}	l m				
rapid decrease	,					
Flow ratio of a rapid	(Q _{max} / Q _{min}) ^{inc} ,	_				
increase/decrease	(O _{max} / O _{min}) ^{dec}					
Scale of time						
Mean rate of flow	R _{Qm,inc} , R _{Qm,dec}	m ³ /(s				
increase/decrease	'`Qm,inc''`Qm,dec	*h)				
Mean rate of stage	R _{Hm,inc} , R _{Hm,dec}	cm/h				
increase/decrease	'`Hm,inc / '`Hm,dec					
Maximal rate of flow	R _{Qmax,inc} , R _{Qmax,dec}	m ³ /(s				
increase/decrease	''Qmax,inc'''Qmax,dec	*h)				
Maximal rate of stage	R _{Hmax,inc} , R _{Hmax,dec}	cm/h				
increase/decrease	'Hmax,inc' 'Hmax,dec					
Time of the start/end of a rapid	t _{s.inc} , t _{e.inc}	hh:m				
increase	s,inc / se,inc	m				
Time of the start/end of a rapid	t _{s,dec} , t _{e,dec}	hh:m				
decrease	-s,dec / -e,dec	m				
Duration between a rapid increase	T _{high}	l _h				
and decrease	- nign					
Duration between a rapid	T _{low}	l _h				
decrease and increase						
Frequency						
Count of rapid	$N_{a,inc}$, $N_{a,dec}$	1/a				
increases/decreases per year	-,					
Portion of days with certain						
number of rapid	D _{n,inc} , D _{n,dec}	-				
increases/decreases per day						
Portion of rapid	L					
increases/decreases during	N_{dl} , N_{tl} , N_{nl}					
daylight/twilight/darkness						

2. COSH-Tool

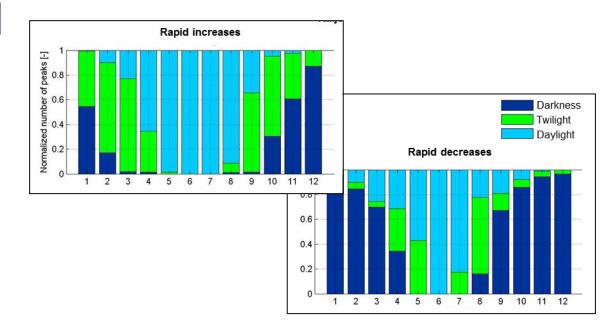
Characterisation of Stream Hydropeaking - Tool

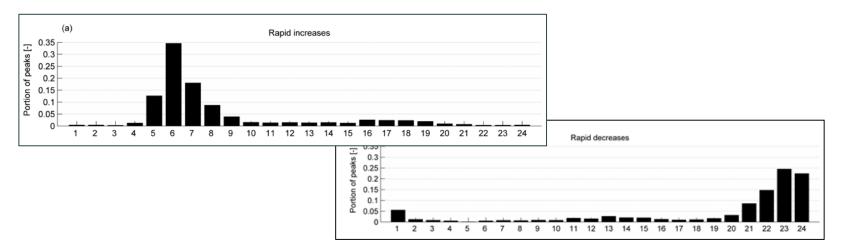
Separation into increases and decreases

Different impacts

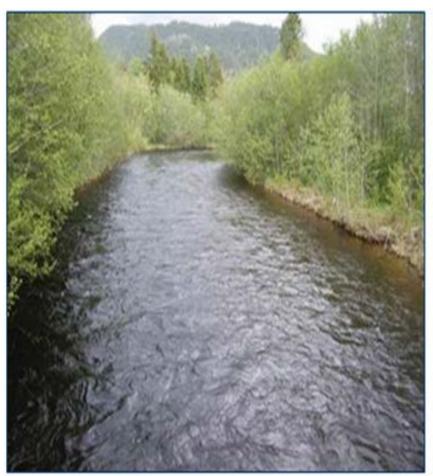
Light conditions

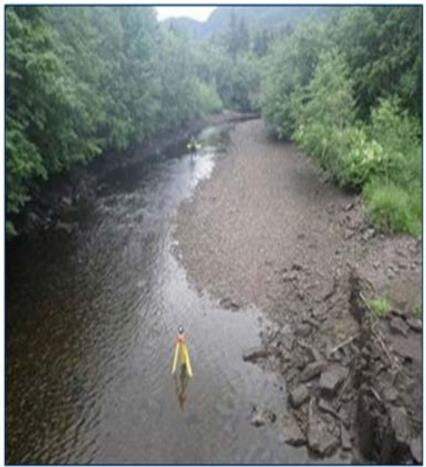
Seasonal shift in habitat use, diel activity and behaviour of fish


Seasonnal analysis

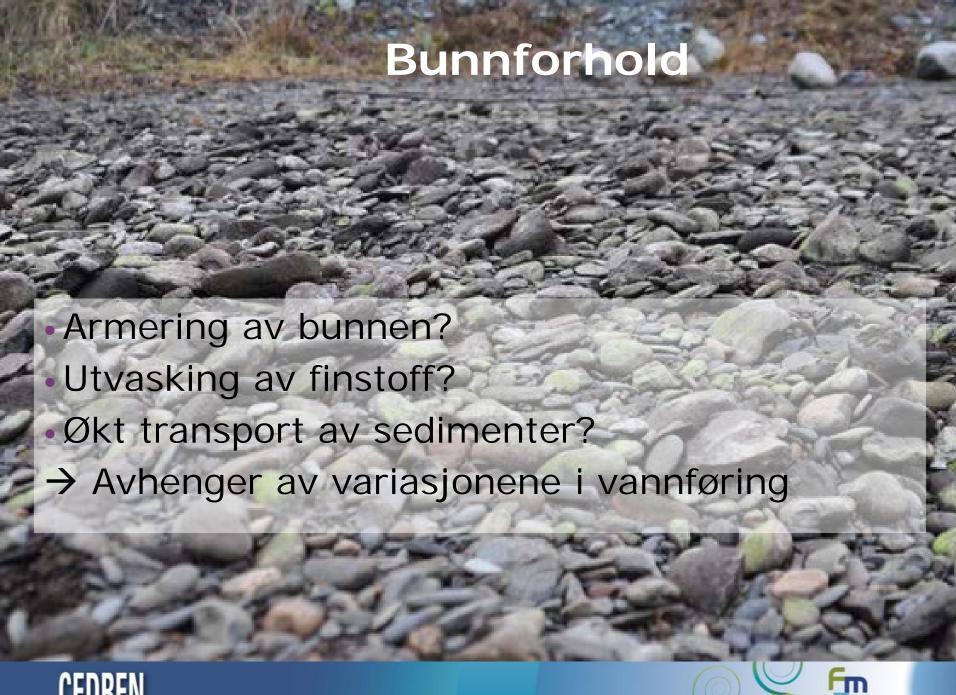


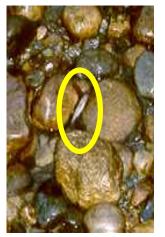
2. COSH-Tool

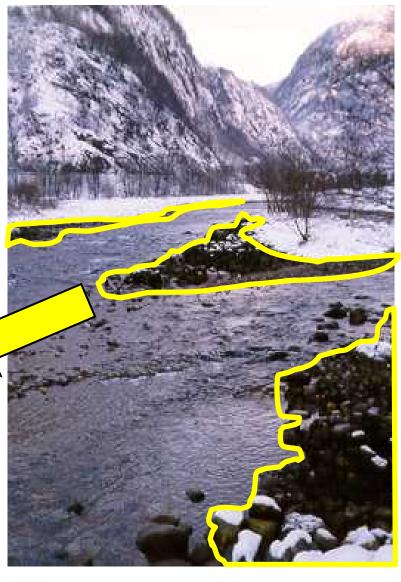

Light conditions



Hour of the day


Hydropeaking – rapid flow change in downstream river





Strandingsfare

- fiskens bruk av utsatte områder

Fish: Experimental setup in Ims

Growth of fish in peaking environment - experimental setup in Paltamo (Finland)

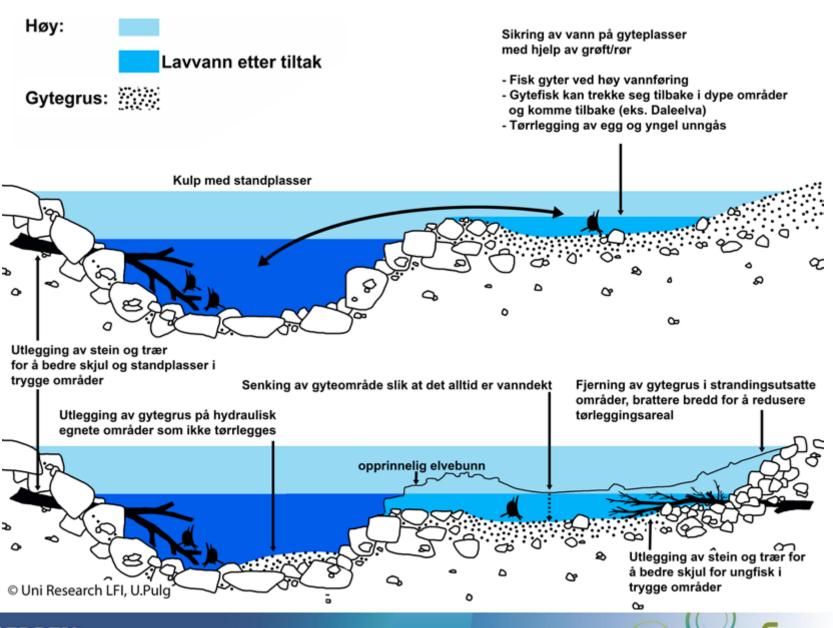
Results - hydropeaking

- Flow fluctuations had no effect on body fat in fish
- Survivors of stranding in winter had significant less body mass – no effect in summer

- Significant effects on body weight and fat in winter:
 - control fish 2.56 g (= 10.3%) heavier
 - control fish have 0.25 g (= 16.6%) more body fat
- Relatively small effects on fish when stranding is avoided in strong fish populations

Elvemusling

- Forsøk med effektkjøring ga ingen dødelighet av individer
- Forsøk har vist at muslinger som blir tørrlagt har større vandringsuro enn de som ikke blir tørrlagt
- Muslinger på dypt vann utsatt for effektkjøring (ikke tørrlagt), viste større vandringsuro enn muslinger ikke eksponert for effektkjøring
- Studier fra utlandet viser at bestander av muslinger eksponert for kraftig effektkjøring reduseres kraftig



Assessment and characterization Effect factors:

Effect factors

- Rate of change
- Dewatered area
- Magnitude of flow changes
- Frequency
- Distribution
- Timing

Indicator

- Water level change ratio
- Change in watercovered area
- Flow ratio
- Annual frequency
- Flow reductions in critical periods

Valued into different classes according to given criteria:

- Small
- Moderate
- Large
- Very large effect

Combine effect and score for total effect score

Assessment and characterization Vulnerability factors:

Vulnerability factors

- Effective population size
- Degree of limitations in recruitment
- Low flow periods as bottlenecks
- · Habitat degradation
- Reduced water temperature
- Other factors
- Percentage of impacted river length compared to total length

Indicator

- Number of females last 5 years
- Amount and distribution of spawning grounds
- Change in lowest annual weekly flow in winter and summer combined
- Change in magnitude and frequency of flood events
- Reduction in summer water temperature
- Proportion of river reach with peaking operations compared to total length [%]

Valued into different classes according to given criteria:

- Low
- Moderate
- High vulnerability

Combine vulnerability for total score

Combinations of hydropeaking effects and vulnerability for total impact assessment

		Hydropeaking effects				
		Very large 21-32	Large 15-20	Moderate 10-14	Small 4-9	
Vulnerability	High 16-21					
	Moderate 10-15					
	Low 4-9					

