Scheduling when reservoirs are batteries for wind- and solar-power

Ove Wolfganga, Arild Lote Hendena, Michael Martin Belsnesa, Christoph Baumannb, Andreas Maazb, Andreas Schäferb, Albert Moserb, Michaela Harastac, Trygve Dobled

aSINTEF Energy Research, Energy systems, Sem Sælands vei 11, Trondheim 7034, Norway
bRWTH Aachen University, Institut für Elektrische Anlagen und Energiewirtschaft (IAEW), Schinkelstraße 6, 52056 Aachen, Germany
cE.ON Kraftwerke GmbH, hydropower division, Luitpoldstraße 27, 84034 Landshut, Germany
dAgder Energi, Kjøta 18, 4630 Kristiansand, Norway

5th International Workshop on Hydro Scheduling in Competitive Electricity Markets
Renewable power generation in EU

- More than doubled since 2000
- Targets for further increases towards 2020 and 2030
- Reducing the cost of this policy is an important motivation for the ongoing liberalization/legislation process in the EU
Can hydropower reservoirs be batteries for wind- and solar-power?

■ The battery idea
 - 86 TWh storage capacity in Norwegian reservoirs
 - Could we utilize some of it to balance renewables in Europe?
 - Then we need to increase generation capacity and build new cables!

■ Some existing studies
 - Solvang et al. (2012): Identified a potential 20 GW extra generation capacity, utilizing existing reservoirs in Southern Norway
 - Solvang et al. (2014) studied the impacts on the expected hydropower operation based on wind-power variability
 - Korpås et al. (2015) introduced the concept "levelized costs of peaking capacity", and compared hydropower incl. cables with gas-power
Our study

■ Within CEDREN HydroBalance (KPN)
 – Feasibility check for large-scale balancing from Norway
 – http://www.cedren.no/Prosjekter/HydroBalance

■ Research questions
 – How will hydropower be operated in the future?
 – What is the impact of several markets?
 – Will pumped storage investments be profitable?
Market types

- **Day-ahead**
- **Intraday**

Activation of reserves

Many prices for a single operating hour
General approach

Develop methodology
- Hydropower optimization
- With several markets

Forecast prices
- HydroBalance scenario
- 2050
- Several markets

Case-study
- Real river system
- Relevant pumped-storage project
Applied model: ProdRisk

- One of SINTEF's optimization tools for hydropower
 - Local producer / river system
 - Objective: Maximize profits
 - Stochastic variables: inflow, prices
 - Time-resolution/horizon: e.g. hour/year

- However, model is only for one power market (day-ahead)
Accounting for several markets

- A full multi-market optimization not feasible in ProdRisk

- However, the following strategy can be evaluated
 - Supply for day-ahead market as if it was the only market
 - Adjust production in subsequent market when profitable
 - Reserve capacity is a parameter (to be optimized iteratively)

- Similar approach taken by others, e.g. ECN's COMPETES model

- Klæbu and Fosso (2013): So far not many studies have indicating gains of coordinated bidding for several markets
Implementation in ProdRisk

- So far we have included only two markets
 - Day-ahead
 - Activation of replacement reserves (e.g. 15 min response)

- ProdRisk production for a given hour: $f(p)$
 1. Optimize for day-ahead prices: $f(P^\text{day-ahead})$
 2. Optimize for price of reserves: $f(P^\text{reserves})$
 3. "upward" / "downward" regulation: $\Delta f = f(P^\text{reserves}) - f(P^\text{day-ahead})$
 4. Total income for hour:
 $P^\text{day-head} \cdot f(P^\text{day-head}) + P^\text{reserves} \cdot \Delta f$

- Water values and reservoir levels are calculated from actual operation:
 $f(P^\text{day-ahead}) + \Delta f$
General approach

- Develop methodology
 - Hydropower optimization
 - With several markets

- Forecast prices
 - HydroBalance scenario
 - 2050
 - Several markets

- Case-study
 - Real river system
 - Relevant pumped-storage project
IAEW study on future prices

- Quantification of HydroBalance scenario for 2050
 - Based on EU trend study, Eur. Commission (2013)
 - Adjustments include:
 - 20-30 GW new generation capacity in Norway
 - Sufficient increase in cable capacity

- Price simulation
 - Model concept: Schäfer et al. 2014
 - Day-ahead prices for European countries, weather years 2007-2011
 - Reserves (procurement and activation: FCR/FRR/RR), Germany, 2008
Prices: Duration curves

- Statistics
- Big Storage
- Niche Storage
- Reserves

€/MWh
Example of within-week variability

Winter

Summer
General approach

Develop methodology
- Hydropower optimization
- With several markets

Forecast prices
- HydroBalance scenario
- 2050
- Several markets

Case-study
- Real river system
- Relevant pumped-storage project
Otra river system

- Production capacity: 1.1 GW (14 plants)
- Storage capacity: 3.7 TWh (13 reservoirs)
- Annual production: 5 TWh
- ProdRisk input provided by Agder Energi
Otra river system - upper part
Pumped storage investment

- 1000 MW: extra generation capacity and pump
- Reservoirs: 15 days to empty/fill
- Total efficiency (pump x generation): 72.2 % (conservative, cf. Ibrahim 2007)
- Estimated total costs: 416 M € (Henden, 2014)
Scenario

- Statistics
- Big Storage
- Niche Storage
- Multi-market

Supply only for day-ahead market

day-ahead + RR activation

➢ All scenarios: With and without investment
Results - Production

Duration curve

Average day

Continuous lines is existing production system
Dotted lines is with investment
Production and prices within a week

Continuous lines are prices
Dotted lines are productions

Figure at the top is existing production system
Figure at the bottom is with investment in 1000 MW PSP
Results – Reservoir level

- Upper reservoir, Reinevatn/Urevatn
- 2008

Continuous lines are existing production system
Dotted lines are with investment
Economic results (in M € per year)

<table>
<thead>
<tr>
<th></th>
<th>Day-ahead only (Climate years 2007-2011)</th>
<th>German prices (Climate year 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistics</td>
<td>Niche Storage</td>
</tr>
<tr>
<td>Average yearly income</td>
<td>205</td>
<td>474</td>
</tr>
<tr>
<td>Additional operating profits</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Investment cost *)</td>
<td>-24</td>
<td>-24</td>
</tr>
<tr>
<td>Investment profits *)</td>
<td>-15</td>
<td>-2</td>
</tr>
<tr>
<td>Break even interest rate</td>
<td>-0,5 %</td>
<td>4,5 %</td>
</tr>
</tbody>
</table>

*) With 5 % annual interest rate
Summery of results

■ Variability in operation
 – Increased with pumped storage (short term and during a year)
 – Highest for multi-market strategy
 – Traditional day/night trend is changed because of solar radiation

■ Income
 – Future scenarios gives 2-3 times higher total income
 – Multi-market strategy gives about 2% extra income

■ Payback for investment in pumped storage
 – Negative profits for historical prices
 – About break-even for day-ahead strategy at future prices
 – Multi-market strategy: Income from investment increase by 21%
Conclusions

■ Multi-market
 - Methodology is performing as intended
 - Evaluated strategy is not 100% optimal but reasonable / pragmatic
 - Next: Include reserve power (MW), and possibly intra-day

■ Price-level is important for total income

■ Price-variability (and therefore market participation) is important for profitability of pumped-storage investment

■ Based on our study, environmental impacts in reservoirs will be studied further in HydroBalance
References

- Cf. full paper