

Centre for Environmental Design of Renewable Energy

WP 7 Physical effects of load fluctuations in rivers

Stephan Spiller Nils Rüther

Research schedule:

Milestone / type of deliverable	Description	Reached by (month a	& year)
PhD start up	Welcome Stephan Spiller at the Department and within CEDREN	11-2010	Ok
Research plan	reviewing literature and demands of end user to establish a research plan	06-2011	Ok
Exams demaded within the PhD regulations	3 PhD level courses and 1 MSc level course	12-2011	Ok
Research start	Establish plan for measurement campaign in field & laboratory	03-2011	Ok
Progress report	Evaluation of progress by interims report	10-2012	Ok
Publishing; peer-reviewed conferance papers	It is planned to participate in 4-6 international conferences	12-2013	8 first author 3 co-author papers
Publishing; peer-reviewed journal paper	3 journal paper submissions are planned	06-2014	1 accepted 1 in review 1 in progress p
Final report	Dissemination of final results to the end users	08-2014	
Thesis	Defending the thesis	08.12.20)14

Motivation:

- Increased importance of hydropower peaking due to flexible energy market
- How is bed stability affected by rapid flow fluctuations?
- How can effects on flow fluctuations be mitigated?

Norwegian University of Science and Technology Tinfos power plant; hydropower reservoirs in Norway represent a great potential for a future European power system. Photo: © Ånund Killingtveit, NTNU

CENTRE FOR ENVIRONMENT-FRENDLY ENERGY RESEARCH

Static armor layer

Artificial copy

CEDREN Centre for Environmental Design of Renewable Energy

Artificial streambed :

Pro

Same prerequisite conditions for every experiment
Possible to include discharges larger than the critical without destroying the bed.

•Streambed can be moved to other facilities (Germany, Norway, New Zealand)

ContraNo porosity

CEDREN Centre for Environmental Design of Renewable Energy

Experimental setup:

- Flume: 18.5m long , 0.46m wide , slope 0.5%
- Artificial streambed
- 10cm x 10cm target piece supported by force sensor

Experimental procedure:

- Certain flow increase in a certain amount of time.
- >200 different hydrographs

<u>Results – Shear stress:</u>

- 6.5 l/s to 41.8 l/s in 24 seconds
- Relatively extreme example!
- Still no extreme difference between quasi steady and unsteady.

<u>Results – Lift Force:</u>

- 6.5 l/s to 41.8 l/s in 24 seconds
- Relatively extreme example!
- Severe lift forces 50N/m² (≈5kg/m²)

The hyporheic zone during hydropower peaking (hyporheic zone = mixing zone of surface- and ground water)

Situation 1: Surface water stage > groundwater stage "DOWNWELLING" River River Hyporheic zone Situation 1: Situation 1:

Situation 2: **Surface water stage < groundwater stage** *"UPWELLING"*

- Upwelling and downwelling are responses to the hydrostatic pressure difference between ground water table and surface water stage. They can be described as <u>"quasi-steady effects"</u> of hydropower peaking
- Are there additional <u>"dynamic" or "unsteady effects"</u> during hydropower peaking, affecting the hyporheic zone?

<u>Results – Lift Force:</u>

- 6.5 l/s to 41.8 l/s in 24 seconds
- Relatively extreme example!
- Severe lift forces 50N/m² (≈5kg/m²)

Centre for Environmental Design of Renewable Energy

<u>Results:</u>

Same change in discharge in three different "speeds"

CEDREN

 $\frac{\text{moderate}}{10^{-5}}$

time [s]

slow

READLY ENERGY

<u>Results:</u>

DNTNU

Norwegian University of Science and Technology → With more than 200 hydrographs, these can be isolated...

<u>Results:</u>

 ${ }$

INTER PO ENVIRONMENT-HOUR AND

<u>Results:</u>

CEDREN Centre for Environmental Design of Renewable Energy

<u>Results:</u>

CENTRE FOR ENVIRONMENT-FREMOLY ENERGY RESEARCH

Conclusions:

- Unsteady flow can have significant dynamic effects on the lift acting on a streambed compared to the bed-shear stress.
- Operational mitigation measures during hydropower peaking reduce the dynamic lift but often interfere with the hydropower plant's production schedule
- Non-Linear (progressive) peaking can be an operational mitigation measures that effectively reduces dynamic lift during flow increases without interfering with the production schedule of hydropower plants.

Norwegian University of Science and Technology

FRIENDLY ENERG

FRIENDLY ENERG

NTNU

4 years of work! outcome...

HydroPeak WP7 finished??!!

- PhD finished → Public defence on 8th of
 December → Rådsalen Gløshaugen
- Nils Rüther applied for transfer of money to continue in 2015 \rightarrow use of blue flume

Centre for Environmental Design of Renewable Energy

13 papers

2014

Spiller, Stephan; Ruther, Nils; Friedrich, Heide.

CEDREN

Dynamic lift on an artificial static armor layer during highly unsteady flow. *Journal of Hydraulic Engineering (ASCE)* In review

Spiller, Stephan; Ruther, Nils; Baumann, Benjamin.

Form-induced stress in non-uniform steady and unsteady open channel flow over a steady rough bed. *International Journal of Sediement Research*. <u>Accepted for publication</u>

Spiller, Stephan; Ruther, Nils; Friedrich, Heide.

Mitigation measures for unsteady flow effects on riverbeds during hydropower peaking. I: *Proceedings of the River Flow 2014 International Conference on Fluvial Hydraulics*. CRC Press 2014 ISBN 978-1-138-02674-2. s. 1807-1812

Spiller, Stephan; Ruther, Nils; Casas-Mulet, Roser; Friedrich, Heide.

PORE WATER EXCHANGE IN GRAVEL BED RIVERS DURING HYDROPOWER PEAKING EVENTS. 10th International Symposium on Ecohydraulics 2014; 2014-06-23 - 2014-06-27

Friedrich, Heide; Spiller, Stephan; Ruther, Nils.

Near-bed flow over a fixed gravel bed. I: *Proceedings of the River Flow 2014 International Conference on Fluvial Hydraulics*. CRC Press 2014 ISBN 978-1-138-02674-2. s. 279-285

Török, G.T.; Baranya, S; Ruther, Nils; Spiller, Stephan.

Laboratory analysis of armor layer development in a local scour around a groin. I: *Proceedings of the River Flow 2014 International Conference on Fluvial Hydraulics*. CRC Press 2014 ISBN 978-1-138-02674-2. s. 1455-1462

2013

Spiller, Stephan; Ruther, Nils.

The Impact of Hydropower Peaking on Gravel Beds. Hydro2013 International Conference; 2013-10-07 - 2013-10-09

Spiller, Stephan; Ruther, Nils; Baumann, Benjamin.

PIV Measurements of Steady Flow over an Artificial Static Armor Layer. I: *Proceedings of the 35th IAHR World Congress*. China: Tsinghua University Press 2013 ISBN 978-7-89414-588-8.

Ruther, Nils; Huber, Sonja; Spiller, Stephan; Aberle, Jochen.

Verifying a Photogrammetric Method to Quantify Grain Size Distribution of Developed Armor Layers. 35th IAHR World Congress; 2013-09-08 - 2013-09-13

2012

Spiller, Stephan; Ruther, Nils; Baumann, Benjamin.

Artificial Reproduction of the Surface Structure in a Gravel Bed. München: IAHR 2012 (ISBN 978-3-943683-03-5) 6 s

Spiller, Stephan; Ruther, Nils; Killingtveit, Ånund.

Physical Effects of Load Fluctuations in Rivers. *Berichte des Lehrstuhls und der Versuchsanstalt für Wasserbau und Wasserwirtschaft* 2012 (125) s. 52-59

Spiller, Stephan; Ruther, Nils; Koll, Klaus; Koll, Katinka.

Bed load movement over a fully developed armor layer – A tracer experiment. I: *River Flow 2012*. Taylor & Francis 2012 ISBN 978-0-415-62129-8. s. 465-471

2011

Spiller, Stephan; Ruther, Nils; Belete, Kiflom Wasihun; Strellis, Brendon.

Assessing environmental effects of hydropower peaking by 3D numerical modeling. *Flow simulation in hydraulic engineering : Dresdner wasserbauliche Mitteilungen* 2011 ;Volum 1.(1) s. 79-86

CEDREN Centre for Environmental Design of Renewable Energy

Methods and measurement devices

- Artificial gravel bed
- Direct force measurement
- Freeze cores
- Suspended sediment
- Particle Image Velocimetry (PIV)
- Acoustic Doppler Velocimetry (ADV)
- Numerical methods

50 mm

Basis for further research

0.000

- New PhD student at NTNU
- Master students

Velocity: Magnitude (m/s)

3.00

 Projects at other institutes in Norway, Germany, New Zealand

4.00

5.00

networking

🛞 UniversiTà degli STudi di Napoli Federico II

Te Whare Wānanga o Tāmaki Makaurau

Technische Universität Braunschweig

- 9 conferences
- 3 workshops
- 2 research exchanges

Connections within CEDREN and NTNU

- Nils → EnviPEAK many project collaborations
- Roser Casas-Mulet is co-Author in Ecohydraulics paper
- Marine Technology PIV
 group

New flume installed at NTNU

- Flume installed
- gangway
- working platform
- staircase
- downstream weir
- 5 tons of sediments
- Automatic valves
- Inductive discharge measurement
- Connection to high reservoir
- Connection to low reservoir
 - Traverse
- Several Master theses
- 4 Months cooperation with Hungarian PhD student
- Collaboration with MARINTEK
- New PhD Student at NTNU

Centre for Environmental Design of Renewable Energy

Thank you very much for your attention

Stephan Spiller Nils Rüther

NTNU